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Whereas human neutrophils are effective and efficient killers of bacteria, macrophages such as those
derived from monocytes are almost devoid of killing activity. Nevertheless, monocytes can be trans-
formed into effective killers of mycobacteria or staphylococci when exposed to clinical concentrations
of a phenothiazine or to inhibitors of efflux pumps (reserpine and verapamil), or to ouabain, an inhibi-
tor of K1 transport. Because the rates of multidrug-resistant Mycobacterium tuberculosis (MDR-TB)
continue to escalate globally, and because no new effective drug has been made available for almost
40 years, compounds that enhance the killing activity of monocytes against MDR-TB are obviously
needed. This review covers the specific characteristics of MDR-TB, identifies a variety of agents that
address these characteristics and therefore have potential for managing MDR-TB. Because the mech-
anism by which these agents enhance the killing of intracellular bacteria is important for the intelligent
design of new anti-tubercular agents, the review correlates the mechanisms by which these agents
manifest their effects. Lastly, a model is presented which describes the mechanisms by which distinct
efflux pumps of the phagosome–lysosome complex are inhibited by agents that are known to inhibit
K1 flux. The model also predicts the existence of a K1 activated exchange (pump) that is probably
located in the membrane that delineates the lysosome. This putative pump, which is immune to inhibi-
tors of K1 flux, is identified as being the cause for the acidification of the lysosome thereby activating
its hydrolytic enzymes. Because the non-killer macrophage can be transformed into an effective killer
by a variety of compounds that inhibit K1 transport, perhaps it would be wise to develop drugs that
enhance the killing activity of these cells inasmuch as this approach would not be subject to any
resistance, as is the eventual case for conventional antibiotics.
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Introduction

Mycobacterium tuberculosis has infected man since the birth of
civilization.1,2 This long association has in all probability been
the selection process by which this organism evolved into a
steadfast human pathogen. The steadfast nature of this human
infection has been the basis for its eventual elimination as a
human pathogen inasmuch as the effectiveness of therapy with
antibiotics available in the 1950s was readily proven by the
steady decline of new cases of pulmonary tuberculosis through-
out the Western World.3,4 With respect to Third World countries,
infections continued to increase due to man-made conditions
such as famine, war and over-crowding, as well as to the cost of
anti-tubercular drugs, which for many countries was beyond
their affordability.5 The movement of large numbers of people
(refugees) from Third World countries that had experienced war,
political strife or famine, to parts of the West, contributed

decades later, to significant increases of new cases of pulmonary
tuberculosis. Although these new cases of pulmonary tuberculo-
sis were initially restricted to these immigrants,6 – 8 the infection
began to spread rapidly among the indigenous population of the
cities where the immigrants had settled.8 Despite the availability
of effective anti-tubercular compounds, new cases of pulmonary
tuberculosis continued to escalate, and in some cities such as
New York, the rate of new cases was extremely alarming.9,10

One of the reasons for this escalation involved the appearance of
large numbers of cases that were infected with M. tuberculosis
that was resistant to the two most effective anti-tubercular drugs,
isoniazid and rifampicin;11 hence, patients infected with
multidrug-resistant M. tuberculosis (MDR-TB) strains were
sources for new transmissions of infections, which rapidly mani-
fested themselves as active disease in patients co-infected with
HIV.12 Moreover, because of the availability of anti-tubercular
drugs and ineffective therapy, strains initially susceptible to
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isoniazid and rifampicin could infect another patient who, due
to the selection of a spontaneous mutation that resulted in resist-
ance to one antibiotic, would be managed poorly with these
agents, and a second spontaneous mutation that caused resist-
ance to the second antibiotic would be selected.13 Therapy of
MDR-TB is extremely problematic, regardless of whether one
uses all five first-line drugs of defence (isoniazid, rifampicin,
streptomycin, ethambutol, pyrazinamide), or second line of
defence compounds.14 Furthermore the use of these therapeutic
modalities produces significant morbidity in view of the
problem of non-compliance.15 Hence new cases of MDR-TB
have continued to increase in many of the urban centres of
Western and Third World countries.16

Tuberculosis: the disease and requirements for
an effective anti-TB drug

Mycobacterium tuberculosis infects the lung parenchyma intra-
cellularly and generally remains silent for 90% of those infected,
and for many of these cases, the infection is resolved, and for
still fewer cases, evidence of infection is noted only at autopsy.
When the organism breaks free of its intracellular prison in
large numbers it manifests its presence by dissemination to
other sites of the lung, thereby increasing the size of the area
infected. At this time the organism may be expelled via micro-
droplets of sputum to the environment when the patient
coughs. When this occurs the infection has progressed to one
of active disease. At this stage the patient is infectious. The
percentage of infected patients that progress to active disease
can be drastically increased by conditions that promote
immuno-incompetence.17 – 24

An effective anti-tubercular drug must satisfy two
conditions—namely, it must be able to inhibit the replication of
M. tuberculosis at its intracellular location and/or kill the
organism directly at that site.15,25,26 Surprisingly, with few
exceptions, almost all studies that report on the anti-tubercular
activity of old or new drugs have been conducted in vitro.
Subsequent to these studies, the compounds are then tested in
animal models for their ability to cure or reduce a tuberculosis
infection. Because very few, if any, show any effectiveness on
the infected mouse, it is not surprising that few of these
compounds reach clinical trials, and even fewer may make it to
the market place. For this reason the last effective anti-TB com-
pound that reached the market was rifampicin, almost 40 years
ago.27 Why is there such a discrepancy between the many drugs
that demonstrate activity in vitro and fail to cure a TB infection
in vivo? This is probably due to their inability to reach the
intracellular organism or maintain activity at that site.28,29

The phenothiazines: compounds that satisfy the two
essential aspects of an effective anti-tubercular drug

The antimicrobial activity of phenothiazines has been known for
over a century.26 The first phenothiazine to be examined for anti-
bacterial properties was the dye methylene blue.26,30 This dye
(Figure 1) could render mobile bacteria immobile31,32 as well as
inhibit the in vitro growth of some Gram-positive bacteria.33 – 35

However, soon after the demonstration of its antibacterial

properties, the dye was shown to cause cats to become lethar-
gic.36 Interest in the neuroleptic properties of the dye over-
shadowed its antimicrobial properties—hence, the dye was used
as a lead compound for the synthesis of the first neuroleptic,
chlorpromazine, which is a colourless phenothiazine (Figure 1).
The availability of chlorpromazine in 1957 resulted in its world-
wide use for the therapy of psychoses and severe neuroses,
through which it soon became clear that chlorpromazine had
antibacterial properties, including those of an anti-tubercular
drug.37 Nevertheless, little interest in chlorpromazine, or any
other phenothiazine, as an antibacterial drug (antibiotic) was
generated, since it was the ‘Golden Age of Antibiotics’38 and
the drugs available at that time (1960s) were shown to be very
effective at controlling tuberculosis, given the rapid and steady
decline of the disease.39 However, with the extensive use of
antibiotics, the problem of resistance began to appear in the
early 1960s40 and escalated to such significant levels that for
many bacterial infections, treatment became problematic.41 – 44

Although the response of the pharmaceutical industry kept pace
initially with the problem, by rapidly making available new anti-
biotics, the time between the introduction of a given antibiotic
and ensuing significant rates of resistance grew shorter.45 – 48 By
the 1990s, antibiotic resistance became the ‘norm’ for many bac-
terial infections; with respect to M. tuberculosis this was to
rifampicin and isoniazid, the two most effective anti-tubercular
compounds. MDR-TB was significant in many areas of the
world, including urban centres in Western Europe (e.g. Lisbon,
Barcelona), and in Northern Europe (e.g. Riga).49 The failure of
conventional anti-tubercular therapy experienced early in the
1990s spurred a search for new anti-tubercular drugs—a search
that has thus far resulted in no new compounds that are as effec-
tive as those to which resistance had developed. Because the
problem of MDR-TB primarily took place in countries that were
economically disadvantaged,27,28 the required incentive was not
present for the creation of new and effective compounds, given
the high cost of drug development and the poor market con-
ditions present in the countries affected. Prior to and during the
emergence of MDR-TB, phenothiazines had been observed to
have potential for the therapy of tuberculosis.25 The studies
described in that review indicated that the administration of
chlorpromazine to patients presenting with tuberculosis resulted
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in cures.25 The ability of chlorpromazine to cure tuberculosis
resulted in a series of in vitro studies that not only showed that
chlorpromazine was an effective anti-mycobacterial com-
pound,50 – 54 but also that other phenothiazines (see Figure 1)
were equally effective.51,55 – 62 Nevertheless, the concentrations
of chlorpromazine and other phenothiazines required for in vitro
inhibition of mycobacterial growth were well beyond those that
could be achieved in the patient.25,26 However, because phe-
nothiazines were known to be concentrated by tissues and
organs containing large populations of macrophages,63 – 65

Crowle et al. demonstrated that physiological concentrations of
chlorpromazine present in the medium could enhance the killing
of M. tuberculosis that had been phagocytosed by macro-
phages.50 Because chronic administration of chlorpromazine is
known to produce a wide range of mild-to-severe side effects,
the use of this compound for the therapy of tuberculosis was not
seriously considered.25,26 Given the fact that phenothiazines are
concentrated by macrophages and other cells rich in lyso-
somes,66 – 72 thioridazine (Figure 1), being equivalent to chlor-
promazine in all of its anti-mycobacterial properties,25,26,53,54

was studied for its ability to enhance the killing of phagocytosed
bacteria, including M. tuberculosis.73 – 75 This series of ex vivo
studies demonstrated what had been previously observed for
chlorpromazine,50 namely that concentrations in the medium
that were below those present in the plasma of patients chroni-
cally treated with thioridazine could result in the killing of intra-
cellular mycobacteria.73 These results led the way for studies
that would determine whether phenothiazines could reduce bac-
terial load of the lung in mice infected with M. tuberculosis.

That thioridazine can effectively reduce that load is shown
by the preliminary study summarized in Figure 2. However,
because the manner of infection involved massive intra-
peritoneal doses of M tuberculosis, whereas the number of
organisms of the pulmonary system could be effectively
reduced, those present in the spleen and liver were relatively

unaffected. Hence, the possibility of vertical transmission of
M. tuberculosis to the lungs or other organs remained a distinct
possibility. Since that demonstration, others have shown that
derivatives of chlorpromazine could also reduce the number of
organisms recovered from the lungs of the infected mouse.76,77

Other phenothiazines have also been suggested for the manage-
ment of tuberculosis.57,58,61

How does a phenothiazine enhance the killing of
intracellular bacteria including mycobacteria?

Phenothiazines have been shown to inhibit the transport of Kþ

from external to internal cellular compartments such as transport
channels of cardiac Kir2.1 cells and red blood cells78 – 80 and
between intracellular compartments (e.g. diencephalic neurons,
rat liver mitochondria).81,82 They also inhibit the binding of
calcium to calmodulin, the calcium binding protein of mamma-
lian cells.83 The binding of calcium to calmodulin-like proteins
of bacteria has been amply demonstrated.84 – 93 The inhibition of
calcium access to Ca2þ-dependent ATPase inhibits transport pro-
cesses such as those performed by influx and efflux pumps.94 – 96

Because phenothiazines inhibit access to calcium, they inhibit
the activity of calcium-dependent ATPase, and hence the trans-
port processes.94 – 101

Bacteria as well as mammalian cells contain efflux pumps
that extrude noxious agents from the periplasm and cytoplasm
of the former102 and from the cytoplasm of the latter.103

Understanding the effects of a phenothiazine on calcium-
dependent transport processes of the bacterium or the mamma-
lian cell predict that their respective efflux pumps will be
affected by a phenothiazine. This prediction has been shown to
be correct whenever studied.94 – 101 Since the first contact of
phenothiazine with the bacterium takes place at the surface of
the cell envelope, it would be expected that although the phe-
nothiazine could penetrate this structure as a consequence of a
concentration gradient and its amphipathic structure, one of the
many efflux pumps of the bacterium would recognize this mol-
ecule and extrude it once it reached the periplasm of the bacter-
ium. Although this expectation has yet to be fully studied, the
effect of phenothiazine on the efflux system of the bacterial cell
has been shown to be one of inhibition.96 – 101 Phenothiazines
readily intercalate between nucleic bases of the DNA helix.104–108

The degree of intercalation is dependent upon the number of
guanosine-cytosine residues.105 When phenothiazines intercalate
into DNA they inhibit all DNA-based processes as well as the
degree of coiling and uncoiling of DNA promoted by
gyrases.109 The inhibition of the efflux pump by a phenothiazine
would result in large numbers of phenothiazine molecules enter-
ing the cell, reaching their intercalative sites of the DNA and
thereby inhibiting the replication of the bacterium.

The concentrations of the phenothiazine in the medium
required for the inhibition of bacterial replication vary greatly
depending on the type of bacterium: the MIC of phenothiazines
for Gram-negative bacteria ranges from 100 to 200 mg/L,
whereas for Gram-positive bacilli or cocci the MIC ranges from
10 to 40 mg/L.26 Although not proven, there seems to be a
strong correlation between bacteria that contain a highly effec-
tive system of efflux pumps and the concentration of the
phenothiazine required for the in vitro inhibition of replication.
As an example, as much as 35% of the genome of
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Figure 2. Effect of thioridazine (TZ) on the recovery of M. tuberculosis

from infected mice. Four groups, each consisting of eight female mice were

infected intraperitoneally with approx. 106 cfu of M. tuberculosis H37Rv

ATCC 27294 and treated 3 days later with daily doses of thioridazine (100,

400 or 1200 mg/kg). The fourth group received no drug. At intervals of
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cellular debris with the use of NaOH/sodium citrate/cysteine. Following
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preparation of serial dilutions required for colony-forming unit

determination. Because treatment with daily doses of 100 and 400 mg/kg

produced marginal results, these data are not shown. Controls, filled

triangles; 1200 mg/kg, filled squares.
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Gram-negative bacteria codes for influx/efflux pumps (transpor-
ters) and, with respect to Escherichia coli, as many as 20 MDR
efflux pumps have been genetically characterized.102 Although
this organism has an obvious redundancy of efflux pumps, the
major efflux pump that accounts for MDR in this organism is
coded by the acrAB-TolC operon.97 When this operon is deleted,
the organism becomes extremely susceptible to antibiotics, and
to chlorpromazine and thioridazine.97 When both the
acrAB-intact and acrAB-deleted strains are induced to high
levels of resistance to tetracycline, the genetic expression of the
AcrAB efflux pump of the former has been increased 6-fold
whereas the AcrEF efflux pump of the latter strain has been
increased 80-fold.97 The increased genetic expression of these
pumps renders both strains significantly more resistant to
chlorpromazine and thioridazine than their parents. These results
support the contention that chlorpromazine and thioridazine are
substrates of the AcrAB and AcrEF efflux pump systems and
that when the ability of the pumps to extrude the agents is
exceeded, the agents reach their intercalative targets and
bacterial replication is inhibited. Because the concentration of
either phenothiazine in the medium that enhances the killing of
intracellular bacteria is about a 100th of that needed to kill the
bacterium in vitro, 73 – 77 the killing activity appears to be related
to the phenothiazine being concentrated by the non-killing
macrophage to levels comparable to those required for
killing in vitro.50 Electron microscopic studies of the effects of
phenothiazines on phagocytosed Staphylococcus aureus
demonstrate that the in vitro effect of these agents on the
bacterium’s morphology is reproduced when the bacterium is
phagocytosed by macrophages that are subsequently exposed to
concentrations of the agent (see Figure 3) which produce neither
an inhibition of replication nor a change in the morphology of
the organism.110

Requirement of K1 for intracellular killing

The killing activity of neutrophils, although highly complex, has
been shown by a series of elegant studies conducted by Segal’s
group111 to depend upon the availability of Kþ to the phagolyso-
some112 and the dependence of this process on active Ca2þ

channels of the phagolysosome unit. The essential need
for Ca2þ required for the availability of Kþ involves a
Ca2þ-dependent ATPase that is employed for the generation of

energy required in Kþ transport. Because the Kþ concentration
needed to trigger the acidification process required for the acti-
vation of hydrolases113 is higher than that present in the cyto-
plasm11,112 one would have to assume that the membrane of the
phagolysosome complex would contain the required energy-
driven efflux pumps. Because phenothiazines do transform non-
killing macrophages into effective killers50,73 – 75 and because
phenothiazines are potent inhibitors of Kþ transport processes
that are dependent upon Ca2þ-dependent ATPase, it seems prob-
able that killing is enhanced by the phenothiazine’s inhibition of
Kþ efflux from the phagolysosome. If this hypothesis is correct,
then one would predict that inhibitors of Kþ transport would
also enhance the killing activity of non-killing macrophages. As
is evident from Figure 4, ouabain, verapamil and reserpine,
which are inhibitors of Kþ transport processes, also enhance the
killing activity of non-killer macrophages.114 The question of
whether the Kþ efflux pump units pre-exist in the lysosome or
are part of the phagosome unit, and hence have their origins in
the plasma membrane of the macrophage, has not yet been
addressed. Nevertheless, with the exception of smooth
muscle,115 the plasma membrane of most mammalian cells has a
plethora of Kþ transport units.116 In all likelihood the plasma
membrane that delimits the phagosome probably contains many
Kþ transport units whose origins are from the plasma membrane
of the macrophage. Due to the invagination process that results
in the phagosome, the plasma membrane would pump Kþ from
the lumen of the phagosome to the cytoplasm, a region of the
cell that is known to have a high concentration of the ion.117 It
is at these Kþ transport sites of the phagosome where ouabain,
verapamil, reserpine and phenothiazines inhibit Kþ efflux; and
thereby the concentration of Kþ within the phagosome would be
maintained to levels needed for the acidification of the phagoly-
sosome and activation of the hydrolases.111,112 However, recent
studies have shown that the killing activity of monocyte-derived
macrophages, which are identical to those used in the exper-
iments described in Figure 4, is dependent upon extracellular
calcium and extracellular ATP,118,119 both of which are under
transport control mediated by Ca2þ-dependent ATPase. As is the
case for the Kþ transport systems, the transport process for Ca2þ

would be reversed in the phagosome if this system were to be
retained in the plasma membrane that delimits the phagosome
unit. Phagocytosis of the bacterium by macrophages should
result in a phagosome that contains Kþ and Ca2þ transport

(a) (b)

0.15 µm 0.15 µm

Figure 3. The ex vivo effects of thioridazine on the ultrastructure of

Staphylococcus aureus phagocytosed by monocyte-derived macrophages.

(a) Control; (b) thioridazine-treated 6 h post-phagocytosis; thioridazine

(0.1 mg/L) was added to the medium 30 min after phagocytosis.110
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systems that pump out these ions to the cytoplasm of the cell. It
is hypothesized that failure to kill bacteria present in the
phagosome–lysosome is due to the low concentration of these
ions in the complex that results from their extrusion to the cyto-
plasm. The inhibition of either one or both of these processes by
a phenothiazine may establish conditions by which the concen-
tration of these ions can be increased to a point where other
ATP-driven membrane exchange systems involved in the
cytosolic homeostasis are activated, leading to an intense hydro-
lytic activity of the phagosome–lysosome ATPases, in particular
the V-ATPases.113,118,119 The import of Hþ thereby creating
the acidification of the lysosome component that had fused
with the phagosome and the activation of the hydrolases needed
for the killing of the bacterium. These ATP-driven membrane
exchange systems must also be immune to ouabain, phenothia-
zines, etc, Figure 5 presents a hypothetical model which
describes the aforementioned events that ultimately transform
non-killer macrophages into effective killers. The phagocytosis
of the bacterium (Figure 5a) results in a phagolysosome
whose pumps extrude Kþ and Ca2þ from the vacuole to
the cytoplasm (IV). When a phenothiazine is presented to the
macrophage that has phagocytosed the mycobacterium
(Figure 5b), the efflux of Kþ and Ca2þ from the phagolysosome
is prevented, the build up of Hþ takes place, the hydrolases are
now activated and the bacterium is digested (VII).

The search for inhibitors of efflux pumps that may
also enhance the killing activity of non-killing
macrophages

Our previous studies demonstrated unusual properties of an
extract made from the Portuguese nuisance plant Carpobrotus
edulis.120,121 Among these were: (i) the ability to invoke Th1
responses of a variety of T-cell subsets as well as to stimulate
the production of cytokines that are involved in the immune
response to an infectious agent; (ii) the ability to render highly
resistant mouse lymphoma cells that contain the MDR efflux
pump transport pg1 completely susceptible to cytotoxic agents;
(iii) the ability to inhibit the MDR efflux pump of these
mouse lymphoma cells as evident from the increased retention
of the efflux pump substrate rhodamine 1,2,3; and (iv) the
ability to enhance the killing of intracellular (phagocytosed)
M. tuberculosis as well as Mycobacterium avium,122 whereas the
highest concentration of the extract was devoid of any in vitro
activity against these mycobacteria. Although it is not yet
known whether the activities noted for the C. edulis extract are
due to one or more substances [the extract and the inhibitors of
Kþ transport (ouabain, reserpine and verapamil) enhance the
killing of intracellular bacteria by non-killing macrophages
whereas they do not have any in vitro activity against these bac-
teria], it seems possible that the activity noted for the extract is

K+

H+

Ca2+

Ca2+

H+
K+

ATP

K+

ATP

ATP

Na+

K+

Ca2+ Ca2+

ATP

H+ K+

ATP

Na+I

H+

ATP
K+

Ca2+

Ca2+

(a)

Ca2+

ATP

K+

Ca2+

K+

H+ATP

ATP

ATP
ATP

ATP ATP

III

H+
H+

L

L

K+ H+

ATP
Ca2+

K+

Ca2+

Ca2+
Ca2+

Ca2+

Ca2+Ca2+

Ca2+

Ca2+ Ca2+

Ca2+

Ca2+

Ca2+

II

ATP

ATP

IV

Figure 5. Hypothetical model suggested for the enhancement of killing of human monocyte-derived macrophages by phenothiazines and other efflux pumps.

(a) Infected and untreated macrophage. (b) Infected and treated macrophage. Sequence of events described in the model: I, binding of bacteria to plasma

membrane; II, invagination and formation of phagosome; III and IV, maturation of phagosome and fusion of the lysosome with the phagosome; V, binding of

inhibitor of efflux pump and formation of vesicle; VI, fusion of vesicle containing the inhibitor of efflux pump with matured phagolysosome; VII, inhibition

of Ca2þ and Kþ efflux by inhibitor of efflux pump; Kþ leaks into phagolysosome with cytosolic homeostasis mechanisms activated leading to an increased

activity of the ATPases; acidification of the phagolysosome; activation of hydrolases; killing of bacteria. Note: hydrolysis of ATP to ADP by ATPases is not

shown in the diagram.

Review

1241



due to one agent, and that this agent manifests its effects via the
inhibition of Kþ transport. Other plant extracts as well as plant-
derived compounds that have been shown to inhibit efflux
pumps of cancer cells also have activity against phagocytosed
bacteria. The suggestion that inhibitors of the P-glycoprotein of
mammalian cells may also inhibit the efflux pump of bacteria
receives support from the studies that used piperidine, an alka-
loid isolated from the fruits of Piper longum123 and its deriva-
tive piperine, to inhibit the P-glycoprotein of Caco-2 cells,124 as
well to increase the retention of ethidium bromide in S. aureus
by the inhibition of efflux activity.125 Polyphenols obtained from
plant sources have been shown to inhibit efflux pumps of
Caco-2 cells126 and have been shown to enhance the killing of
intracellular M. tuberculosis.127

Other plant-derived agents that have activity against efflux
pumps of cancer cells may also enhance the killing activity of
macrophages against bacteria, perhaps even mycobacteria.
Voacamine, a bisindolic alkaloid from Peschiera fuchsiaefolia,
induces a significant increase of drug retention in cancer cells
by its ability to inhibit the MDR transporter protein,
P-glycoprotein.128 Irofulven, a novel anticancer agent derived
from the mushroom, reverses the resistance of cancer cells to
cytotoxic agents by inhibiting the MDR efflux pump responsible
for this resistance.129 Curcumin mixture and three major curcu-
minoids purified from turmeric (curcumin I, II and III) have
been shown to modulate the function of MDR protein 1 (MRP1)
of HEK293 cells stably transfected with MRP1-pcDNA3.1.130

These and many other plant-derived compounds that are active
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against efflux pumps of cancer cells may serve as lead com-
pounds for the synthesis of new agents that have activity against
intracellular bacteria.

Concluding remarks

MDR-TB is an intracellular infection of the non-killing macro-
phage of the lung, so any drug that is to be effective must have
activity at this site. Conventionally, anti-tubercular drugs are
designed to have direct activity against intracellular MDR-TB
and, as has been the case for all other antibiotics, resistance
ensues with usage. Because the non-killer macrophage can be
transformed into an effective killer by a variety of compounds
that inhibit Kþ transport, perhaps it would be wiser to develop
drugs that enhance the killing activity of these cells inasmuch as
this approach would not be subject to any resistance as is inevi-
tably the case for conventional antibiotics.
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