Vitamin D and prostate cancer prevention and treatment

Tai C. Chen and Michael F. Holick

Vitamin D, Skin and Bone Research Laboratory, Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA

Human prostate cells contain receptors for 1α,25-dihydroxyvitamin D, the active form of vitamin D. Prostate cancer cells respond to vitamin D3 with increases in differentiation and apoptosis, and decreases in proliferation, invasiveness and metastasis. These findings strongly support the use of vitamin D-based therapies for prostate cancer and/or as a second-line therapy if androgen deprivation fails. The association between either decreased sun exposure or vitamin D deficiency and the increased risk of prostate cancer at an earlier age, and with a more aggressive progression, indicates that adequate vitamin D nutrition should be a priority for men of all ages. Here we summarize recent findings of: (1) the association between vitamin D deficiency, UVR exposure and the risk of prostate cancer; (2) the mechanism of 1α,25(OH)2D action; (3) the identification of 1α-OHase in the prostate and its implications; (4) the evaluation of antiproliferative activity of 1α,25(OH)2D3 and its analogs in prostate cells in culture, in animal models and in clinical trials; and (5) the controversy that surrounds the association between VDR polymorphism and the risk of prostate cancer.

Vitamin D deficiency, UV exposure and the risk of prostate cancer

An association between vitamin D deficiency and prostate cancer was reported by Ahonen et al. in a 13-year follow-up of 19,000 middle-aged men in the Helsinki Heart Study [9]. In this study, 149 cases of prostate cancer were identified in 1,900 middle-aged men. The study showed that low circulating levels of 25(OH)D (<40 nmol l⁻¹ or 16 ng ml⁻¹) were associated with an increased risk of subsequent earlier onset and more aggressive progression of prostate cancer, especially before the age of 52.

UVR exposure has a significant protective effect in prostate cancer [10,11]. Luscombe et al. [10] showed that cancer patients with the lowest quartile of sun exposure developed cancer at a median age of 67.7 years compared with 72.1 years in patients in other quartiles. Although the mechanism of this association is unclear, it is likely that increased cutaneous synthesis of vitamin D3 increases the circulating levels of 25(OH)D3 and the subsequent formation of 1α,25(OH)2D3 in the prostate by prostatic 1α-OHase [12]. 1α,25(OH)2D3 then interacts with VDR in

Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1α,25(OH)2D3</td>
<td>1α,25-dihydroxyvitamin D3</td>
</tr>
<tr>
<td>25(OH)D3</td>
<td>25-hydroxyvitamin D3</td>
</tr>
<tr>
<td>EB1089</td>
<td>Seocalcitol, 1α,25-dihydroxy-22,24-diene-24,26,27-trihomovitamin D3</td>
</tr>
<tr>
<td>CDK</td>
<td>cyclin-dependent kinase</td>
</tr>
<tr>
<td>CKI</td>
<td>cyclin-dependent kinase inhibitor</td>
</tr>
<tr>
<td>EZF</td>
<td>early gene 2 factor</td>
</tr>
<tr>
<td>IGFBP</td>
<td>insulin-like growth factor binding protein</td>
</tr>
<tr>
<td>p21WAF1</td>
<td>cyclin-dependent kinase inhibitor p21Cip1/Waf1</td>
</tr>
<tr>
<td>p27</td>
<td>cyclin-dependent kinase inhibitor p27Kip1</td>
</tr>
<tr>
<td>p53</td>
<td>tumor suppressor</td>
</tr>
<tr>
<td>RFLP</td>
<td>restriction fragment length polymorphism</td>
</tr>
<tr>
<td>VDR</td>
<td>vitamin D receptor</td>
</tr>
<tr>
<td>VDRE</td>
<td>vitamin D response element</td>
</tr>
</tbody>
</table>

Corresponding authors: T.C. Chen (taichen@bu.edu), M.F. Holick (mfholick@bu.edu).

http://item.trends.com 1043-2766/$ - see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tem.2003.09.004
the prostate and induces cell-cycle arrest and apoptosis [6–8]. Alternatively, either vitamin D photoisomers that are produced in the skin [1] or humoral factors that are unrelated to vitamin D could be responsible for the UVR effect.

Mechanism of vitamin D action in prostate cancer cells

The antiproliferative effect of vitamin D in prostate cells is mediated through VDR, which is a member of the steroid/nuclear receptor superfamily. In target cells, VDR binds 1α,25(OH)2D with high affinity and specificity, and then interacts with the retinoid X receptor (RXR). This heterodimeric complex contains two characteristic zinc-finger motifs that bind to a specific DNA-sequence motif, called a vitamin D-response element (VDRE) in the promoter region of vitamin D-regulated genes and they ultimately regulate the rate of RNA polymerase II-mediated transcription of these genes (Fig. 2) [13].

Evidence that VDR is required for the antiproliferative effects of 1α,25(OH)2D3 in prostate cancer-cell lines has been obtained using stable transfection of cDNA that encodes the VDR into JCA-1 cells, a human prostatic carcinoma cell line [6]. This causes proportional increases in antiproliferative effects and activity of 25(OH)D-24-hydroxylase (24-OHase, also known as CYP24), a mitochondrial cytochrome P-450 enzyme, by 1α,25(OH)2D3. Conversely, stable transfection of antisense VDR cDNA into ALVA-31 cells derived from human prostate cancer...
Although abrogating Rb function with the SV40 large-T antigen in p53-negative PC-3 cells and a line of LNCaP cells (called androgen-sensitive prostate-cancer cells, accumulate in different cell types. For example, LNCaP cells, which are through different pathways to inhibit cell proliferation in to increased activity of p21 waf1, the CDK inhibitor, and attenuation of LNCaP cells in G0–G1 phase is inhibited by 1α,25(OH)2D3 in the presence of Liarozole [an inhibitor of 24-OHase that prevents the 24-hydroxylation of 1α,25(OH)2D3 and so prolongs the half-life of 1α,25(OH)2D3] [7]. These findings indicate that 1α,25(OH)2D3-mediated growth inhibition in DU145 cells and in cell lines generated using the SV40 large-T antigen might be mediated by an alternative mechanism.

Apoptotic actions

Under some experimental conditions 1α,25(OH)2D also induces apoptosis in LNCaP cells [8,15,17,18]. Using the terminal deoxynucleotide transferase- mediated dUTP nick end labeling (TUNEL) assay followed by flow cytometric analysis to quantify DNA fragmentation, Blutt et al. [18] have observed apoptosis after treating LNCaP cells with 1α,25(OH)2D3. This is accompanied by downregulation of two antiapoptotic proteins, Bcl2 and BclXl, and is prevented by overexpression of the gene that encodes Bcl2. Other antiapoptotic proteins (Mcl-1, BAG1L, XIAP, cIAP1 and cIAP2) are also downregulated by 1α,25(OH)2D3 in LNCaP cells but proapoptotic Bax and Bak are unaltered [17]. This downregulation leads to the activation of caspase-3 and caspase-9, the apical proteases in the mitochondrial pathway for apoptosis [17]. Neither apoptosis nor changes in synthesis of pro-apoptotic protein have been observed in DU145 cells treated with 1α,25(OH)2D3. Thus, both growth arrest and apoptosis are involved in growth regulation of LNCaP cells in response to 1α,25(OH)2D3.

Interaction between vitamin D and other hormones

1α,25(OH)2D does not act alone in regulating prostate cell proliferation. RARs and ARs are involved in regulating the growth of some cancer cell lines [7]. Weigel and associates [8] have demonstrated that 1α,25(OH)2D3 and 9-cis RA, a ligand of RXR, act synergistically to inhibit the growth of LNCaP cells and cause cells to accumulate in G0. This appears to be dependent on functional p53 [15]. Zhao et al. showed that 1α,25(OH)2D3 and 9-cis RA increase the expression of mRNA that encodes the androgen receptor (AR) and act synergistically to inhibit LNCaP cell growth [19]. Because both actions are prevented by the pure AR antagonist, Casodex, they concluded that growth inhibition of LNCaP cells by 1α,25(OH)2D3 and/or 9-cis RA is mediated by an AR-dependent mechanism and preceded by the induction of AR gene expression. To re-examine the role of androgens in the antiproliferative effects of 1α,25(OH)2D3 in prostate cancer cells, Yang et al. [20] have utilized two androgen-independent cell models of prostate cancer, ALVA-AR and LNCaP-104R1, that contain functional ARs and VDRs. They found that neither growth of ALVA-AR nor of control ALVA-NEO cells is inhibited substantially by 1α,25(OH)2D3 either in the presence or absence of androgen, which indicates that the resistance of ALVA-AR to 1α,25(OH)2D3-mediated growth inhibition is not caused by lack of AR. They also found that
1α,25(OH)2D3 inhibits the growth of LNCaP-104R1 cells by increasing the concentration of p27 and its subsequent association with CDK2, which leads to an increase in the proportion of cells in the G0–G1 phase of the cell cycle in the absence of androgen. This effect is not blocked by Casodex, which indicates that AR is not required for the effects of 1α,25(OH)2D3 in LNCaP-104R1 cells. Thus, 1α,25(OH)2D3 can inhibit the growth of prostate-cancer cells by both androgen-dependent and androgen-independent mechanisms [7].

Prodifferentiation and other actions

In addition to inhibiting cell growth and causing apoptosis, 1α,25(OH)2D3 stimulates the secretion of prostate specific antigen (PSA) in LNCaP cells [6,7] and the expression of E-cadherin [21], a tumor-suppressor gene. It also inhibits angiogenesis [22] and reduces the invasiveness of DU-145 prostate cancer cells in an in vitro cell-invasion model [23].

Autocrine function of 1α-OHase

The inverse relationship between lower serum levels of 1α,25(OH)2D and higher prostate cancer risk documented in initial reports [24] have not been observed by other investigators [7,8]. This discrepancy highlights the possible importance of intraprostate concentrations of 1α,25(OH)2D rather than serum levels as the risk factor for prostate cancer. Under physiological conditions, 1α,25(OH)2D in the serum is produced mainly by the renal 1α-OHase, which is tightly regulated [1,3]. The levels of 1α,25(OH)2D do not fluctuate significantly with changing levels of serum 25(OH)D, except during vitamin D insufficiency [1]. Therefore, it is difficult to understand why vitamin D deficiency with low circulating levels of 25(OH)D and normal 1α,25(OH)2D levels is associated with the rate of prostate cancer mortality. One explanation is that prostate cells contain 1α-OHase that converts 25(OH)D to 1α,25(OH)2D locally. Thus, the concentration of 1α,25(OH)2D in the prostate might be influenced by the serum level of 25(OH)D.

Extrarenal synthesis of 1α,25(OH)2D from 25(OH)D is in, for example, skin and activated macrophages is well known [1,3], and it is now recognized that two human prostate cancer cell lines, DU145 and PC-3, as well as cells derived from a normal prostate and a prostate with BPH also have 1α-OHase activity and synthesize 1α,25(OH)2D3 from 25(OH)D3. However, 1α-OHase activity has not been detected in LNCaP cells [12].

Comparing the activity of 1α-OHase in primary cultures of prostate epithelial cells derived from four patients with prostate cancer (CaP), two BPH patients and three normal donors demonstrates that the normal cultures had an average activity of 3.0 ± 0.36 pmol mg protein−1 h−1 (mean ± sd), whereas BPH and prostate cancer cultures had an average activity of 1.2 ± 0.28 and 0.46 ± 0.15 pmol mg protein−1 h−1, respectively. Therefore, compared with primary cultures of normal prostate cells, enzyme activity is 60% and 85% lower in the primary cultured BPH and prostate cancer cells, respectively [25,26]. Similar results have been reported by Hsu et al. [27]. These findings have important implications and indicate that the loss of 1α-OHase activity might be associated with the initiation and progression of prostate cancer.

The importance of 1α-OHase in regulating the growth of prostate cells is substantiated by the findings that both 1α,25(OH)2D3 and 25(OH)D3 cause a dose-dependent growth inhibition of the primary cultured cells derived from human prostate tissue (Fig. 3) [27–29]. Because 25(OH)D3 has relatively low binding affinity for the VDR [1/500 that of 1α,25(OH)2D3], it has little or no antiproliferative activity in cells with little or no 1α-OHase activity, such as LNCaP cells [30]. The most likely explanation for the 25(OH)D3 response in the primary cell cultures is that 25(OH)D3 is converted to 1α,25(OH)2D3 by an 1α-OHase that is present in prostate cells.

To further investigate the association between the loss of 1α-OHase activity and prostate cancer, we transfected LNCaP cells with a human 1α-OHase–green fluorescent protein (GFP) fusion construct to confirm that the protein is expressed and appears in the mitochondria (Fig. 4). Alternatively, cells were transfected with cDNA encoding human 1α-OHase to study their responses to 25(OH)D (Fig. 5). Transient and stable transfection markedly increases the activity of 1α-OHase and so confers inhibition of cell growth by 25(OH)D3 (Fig. 5) [26].

Are vitamin D analogs useful for treating prostate cancer?

Numerous reports demonstrate that 1α,25(OH)2D3 stimulates differentiation and inhibits the proliferation, invasiveness and metastasis of prostate cancer cells [6–8,21–23]. In addition, 1α,25(OH)2D3 and its synthetic analogs prolong survival time in murine models of leukemia, and have been used successfully for treating psoriasis [1]. These findings strongly support the use of 1α,25(OH)2D3 and its analogs to treat prostate cancer and/or 1α,25(OH)2D3 as a second line of therapy when androgen deprivation fails. However, the results of several clinical trials indicate that the dose of 1α,25(OH)2D3

Fig. 3. Effect of 1α,25(OH)2D3 (dark green) and 25(OH)D3 (light green) on cell proliferation in primary cultures of prostate cells. Data are mean ± so of nine determinations. *P < 0.05, **P < 0.001 versus controls. There is no significant difference between 1α,25(OH)2D3 and 25(OH)D3 at the doses studied. Reproduced with permission from Clinical Cancer Research [28].
cannot be increased to >0.5 μg twice a day because of hypercalcemia and hypercalciuria [7,8,31,32]. However, the time taken for PSA to double is at least doubled after treatment with 1α,25(OH)2D3 [32]. Therefore, analogs of 1α,25(OH)2D3 that have less calcemic activity and more potent antiproliferative and prodifferentiating activity are attractive therapeutic agents.

During the past two decades, >2000 analogs of 1α,25(OH)2D have been synthesized chemically [31,33] and their biological properties evaluated systematically in a variety of assay systems, with the goal of enhancing their antiproliferative and prodifferentiating activities, and reducing or eliminating their calcemic effects [7,21,28–35]. Several studies have been published that investigate the in vivo response of vitamin D analogs in prostate cancer [35–38]. In general, the analogs are either slightly more potent than or equipotent to 1α,25(OH)2D3, but slightly less calcemic than 1α,25(OH)2D3. A phase I trial of 1α-hydroxvitamin D3 in patients with advanced, hormone-refractory prostate cancer has been conducted, which shows that five out of 25 patients achieved disease stabilization for ≥6 months, with main toxicities being hypercalcemia and renal insufficiency [39]. So far, no analogs of 1α,25(OH)2D3 effectively prevent or inhibit prostate-cancer growth without significant calcemic side-effects.

Another approach to decreasing the side-effects of 1α,25(OH)2D3 and increasing its antiproliferative potency is to use 1α,25(OH)2D3 in combination with other agents, such as retinoids [8], platinum compounds [40], inhibitors of histone deacetylase (sodium butyrate and trichostatin A) [41] and docetaxel [42]. It has been shown that 1α,25(OH)2D3 and cisplatin, the most widely used platinum-based chemotherapeutic agent, act synergistically to inhibit the growth of PC3 and DU-145 cancer cells [40], and that cisplatin enhances 1α,25(OH)2D3-induced apoptotic signaling through mitogen-activated protein kinase kinase (MEKK-1) [43]. Synergistic growth inhibition of LNCaP, PC-3 and DU-145 prostate cancer cells by 1α,25(OH)2D3 and its 19-nor-hexafluoride analogs in combination with either sodium butyrate or trichostatin A has also been observed [41]. The mechanism, which involves histone deacetylation, appears to induce apoptosis by restoring the normal 1α,25(OH)2D3-mediated pro-apoptotic signals that are lost during prostate cancer development. The combination of a weekly, oral high-dose (0.5 μg kg⁻¹) of calcitriol and weekly docetaxel.

![Fig. 4. Location of a fusion protein between 25-hydroxyvitamin D2-1α-hydroxylase (1α-OHase) and green fluorescent protein (GFP) (1α-OHase–GFP) in LNCaP cells. (a-c) LNCaP cells were transfected with either the 1α-OHase–GFP plasmid or (d) GFP plasmid for 24 hours. Cells transfected with 1α-OHase–GFP were treated with MitoTracker Orange (400 nM) for 15 min and observed live with scanning laser confocal microscopy (600 x 1). (a) The green fluorescence (530-nm filter) is perinuclear and punctuate, consistent with localization in the mitochondria. (b) The cell in (a), stained with the mitochondria-specific red fluorescent indicator MitoTracker (580-nm filter). (c) Images (a) and (b) superimposed. Colocalization of the 1α-OHase–GFP green fluorescence with the mitochondrial red fluorescence, which appears yellow-green, confirms that 1α-OHase–GFP is synthesized in the mitochondria. (d) A live LNCaP cell transfected with the control GFP plasmid, viewed using a fluorescein filter. There is uniform green fluorescence throughout the cytoplasm, consistent with synthesis of GFP in the cytoplasm. Scale bar, 50 μm. Reproduced with permission from [26].](tem.trends.com)

![Fig. 5. Effect of 25-hydroxyvitamin D3 [25(OH)D3] (10⁻¹⁰ M) on the incorporation of 3H-thymidine into DNA of LNCaP cells transfected with cDNA encoding 25(OH)D-1α-hydroxylase (1α-OHase). (a) LNCaP cells were transfected transiently with PCR 3.1 vector, antisense (AS) or sense (S) 1α-OHase cDNA. (b) LNCaP cells were stably transfected with either PCR 3.1 vector or with sense 1α-OHase cDNA. Data are presented as % of mock transfected control in the absence of 25(OH)D3. Data are mean ± SD, n = 8, *p < 0.05. Reproduced with permission from [26].](tem.trends.com)
(36 mg m\(^{-2}\)) is well tolerated and effective in achieving a PSA response in 30 out of 37 metastatic, androgen-independent prostate-cancer patients [42].

VDR polymorphism and prostate cancer risk

Following the initial observation that indicated an association between polymorphisms in the VDR gene and the risk of osteoporosis [44], many studies have examined whether the same polymorphisms are related to the risk of prostate cancer [45]. Polymorphisms have been identified in exons 2, 8, and 9 of the VDR gene, and involve FokI, BsmI, and TaqI RFLPs, respectively. The FokI RFLP identified in exons 2, 8, and 9 of the VDR gene, and involves the risk of prostate cancer [45]. Polymorphisms have been examined whether the same polymorphisms are related to microsatellite [51,53] polymorphisms (Table 1). However, the response and vitamin D3 synthesis in response to solar patients and controls that determine the pigmentation factors across populations. In addition, the skin types of prevalence of environmental risk factors and etiological control of confounding factors; and (4) variation in the groups; (2) limitations in the sample size; (3) inadequate conflicting findings. For example, they could be caused by: (1) differences in the selection of the patient and control groups; (2) limitations in the sample size; (3) inadequate control of confounding factors; and (4) variation in the prevalence of environmental risk factors and etiological factors across populations. In addition, the skin types of patients and controls that determine the pigmentation response and vitamin D3 synthesis in response to solar UVB irradiation has not been identified, and this might be crucial for determining the outcome of polymorphism studies [61].

Regarding gene–gene interaction, the combined effects of the insulin-like growth factor (IGF) system and vitamin D on prostate cancer risk have been investigated in a population-based case-control study in Shanghai, China [59]. No significant association was observed between either BsmI or FokI polymorphisms in the VDR gene and prostate cancer risk. However, there was a decreased risk of prostate cancer in men with the highest tertile of plasma IGFBP-1 or -3 who have the ff FokI genotype but not FF and Ff genotypes. These results indicate that the IGF and vitamin D systems might interact to affect prostate cancer risk [62].

Conclusion and perspectives

It has been known for more than two decades that 1\(,25(OH)_2D_3\) is one of the most effective compounds for inhibiting proliferation and inducing terminal differentiation of normal and cancer cells that contain VDRs, including prostate cells. There has been progress in understanding how 1\(,25(OH)_2D_3\) inhibits cell growth and causes apoptosis in LNCaP cells but not in cells from other cancer cell lines, primary cultures and *in vivo*. More studies are required to examine the *in situ* interaction between vitamin D and other hormones and/or growth factors in the prostate.

If a positive association between polymorphisms in the VDR gene and prostate-cancer risk is established, the VDR genotype could potentially be used to identify men who are more likely to develop clinically significant prostate cancer and to intervene in these men to reduce the morbidity and mortality that result [63].

It is also recognized that an increase in the incidence and mortality of many common solid tumors, including prostate cancer is associated with both limited exposure to sunlight and vitamin D deficiency [1,9–11,64]. However, the exact association between latitude, sun exposure and increased concentrations of 25(OH)D was not well understood until the relatively recent observation that prostate cells contain the enzyme that converts 25(OH)D to 1\(,25(OH)_2D\) [12]. Synthesis of 1\(,25(OH)_2D\) in the prostate indicates that increasing circulating levels of 25(OH)D, either by adequate exposure to sunlight or oral supplementation, might provide a simple way to increase

Table 1. Polymorphisms in the vitamin D receptor gene and prostate cancer risk

<table>
<thead>
<tr>
<th>Location</th>
<th>No. cases/controls</th>
<th>Polymorphism</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>108/170</td>
<td>TaqI</td>
<td>0.34</td>
<td>0.16–0.76 ((P < 0.01))</td>
<td>[46]</td>
</tr>
<tr>
<td>France/Germany</td>
<td>105/132</td>
<td>TaqI</td>
<td>0.5</td>
<td>0.27–0.92 ((P < 0.026))</td>
<td>[47]</td>
</tr>
<tr>
<td>Japan</td>
<td>115/133</td>
<td>TaqI</td>
<td>2.52</td>
<td>1.21–5.27 ((P < 0.009))</td>
<td>[48]</td>
</tr>
<tr>
<td>Portugal</td>
<td>163/211</td>
<td>TaqI</td>
<td>2.11</td>
<td>1.15–3.88 ((P < 0.015))</td>
<td>[49]</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>151/174</td>
<td>BsmI/Poly-A</td>
<td>0.7</td>
<td>0.3–1.6</td>
<td>[50]</td>
</tr>
<tr>
<td>Japan</td>
<td>222/326</td>
<td>BsmI</td>
<td>3.31</td>
<td>2.05–5.32 ((P < 0.0001))</td>
<td>[51]</td>
</tr>
<tr>
<td>Poly–A</td>
<td>0.44</td>
<td>0.198–0.866 ((P < 0.041))</td>
<td>[51]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>57/169</td>
<td>Poly–A</td>
<td>4.61</td>
<td>1.34–15.82</td>
<td>[53]</td>
</tr>
<tr>
<td>Austria</td>
<td>191/191</td>
<td>FokI</td>
<td>0.43</td>
<td>0.428–0.438 ((P = 0.015))</td>
<td>[52]</td>
</tr>
<tr>
<td>Negative association</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>372/591</td>
<td>BsmI, Taq I</td>
<td>0.86–0.92</td>
<td>0.57–1.29</td>
<td>[54]</td>
</tr>
<tr>
<td>Maryland</td>
<td>41/41</td>
<td>Poly–A</td>
<td>1.3</td>
<td>0.4–4.3</td>
<td>[55]</td>
</tr>
<tr>
<td>Japan</td>
<td>60/60</td>
<td>Taq I</td>
<td>0.7</td>
<td>0.2–2.6</td>
<td>[56]</td>
</tr>
<tr>
<td>Japan</td>
<td>100/202</td>
<td>TaqI</td>
<td>1.3</td>
<td>0.6–2.8</td>
<td>[57]</td>
</tr>
<tr>
<td>Poly–A</td>
<td>0.9</td>
<td>0.67–1.01</td>
<td>[58]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>77/183</td>
<td>Taq I</td>
<td>1.4</td>
<td>0.7–2.8</td>
<td>[58]</td>
</tr>
<tr>
<td>Poly–A</td>
<td>1.2</td>
<td>0.6–2.5</td>
<td>[58]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>191/304</td>
<td>BsmI, FokI</td>
<td>1.01–1.13</td>
<td>0.3–3.67</td>
<td>[59]</td>
</tr>
<tr>
<td>Austria</td>
<td>190/190</td>
<td>Taq I</td>
<td>1.76</td>
<td>0.9–3.45 ((P = 0.07))</td>
<td>[60]</td>
</tr>
</tbody>
</table>

http://tem.trends.com
synthesis of 1α,25(OH)2D in the prostate and, therefore, decrease the risk of prostate cancer. Chronic vitamin D insufficiency in young and middle-aged men [65] might increase their risk of prostate cancer. Similar to the recommendation that men >50 years of age should be screened for PSA, surveillance of serum 25(OH)D should be performed annually in men >30 years, especially those who are at higher risk of chronic vitamin D deficiency, such as African Americans and indoor workers. Thus, adequate vitamin D nutrition should be maintained, not only for bone health in men and women, but because it might decrease the risk of prostate cancer in men and mitigate metastatic activity should it develop.

The knowledge that the prostate synthesizes 1α,25(OH)2D and that prostate-cancer cells respond to 1α,25(OH)2D offers new strategies to help reduce the incidence of this devastating disease. The promising results of EB1089 in treating liver cancer offers hope that noncalcemic analogs of 1α,25(OH)2D3 can be developed that might be combined with other chemopreventing agents to treat prostate cancer without serious side-effects [66].

Acknowledgements

This work was supported in part by grants 41188PP1017 and 4121115016 from The Commonwealth of Massachusetts, US Army DAMD17-01-1-0025, and M01RR00533 from NIH.

References

15 Polek, T.C. et al. (2003) p53 is required for 1,25-dihydroxyvitamin D3-induced G0 arrest but is not required for G1 accumulation or apoptosis of LNCaP prostate cancer cells. Endocrinology 144, 50–60
18 Blutt, S.E. et al. (2000) Calciotriol-induced apoptosis in LNCaP cells is blocked by overexpression of bel-2. Endocrinology 141, 10–17
19 Zhao, X.Y. et al. (1997) 1 alpha,25-dihydroxyvitamin D3 actions in LNCaP human prostate cancer cells are androgen-dependent. Endo- crinology 138, 3290–3298
26 Whitlatch, L.W. et al. (2002) 25-Hydroxyvitamin D-1α-hydroxylase activity is diminished in human prostate cancer cells and is enhanced by gene transfer. J. Steroid Biochem. Mol. Biol. 81, 135–140
27 Hsu, J.Y. et al. (2001) Reduced 1α-hydroxylase activity in human prostate cancer cells correlates with decreased susceptibility to 25- hydroxyvitamin D3-induced growth inhibition. Cancer Res. 61, 2852–2856
36 Lucia, M.S. et al. (1995) Chemopreventive activity of tamoxifen, N-(4- hydroxyphenyl) retinamide and the vitamin D analogue Ro24-5531 for androgen-promoted carcinomas of the rat seminal vesicle and prostate. Cancer Res. 55, 5621–5627
38 Blutt, S.E. et al. (2000) A calciotriol analogue, EB1089, inhibits the growth of LNCaP tumors in nude mice. Cancer Res. 60, 779–782

http://tem.trends.com
52 Xu, Y. et al. (2000) Vitamin D receptor start-codon polymorphism (FokI) and prostate cancer progression. Cancer Epidemiol. Biomarkers Prev. 12, 23–27
58 Blazer, D.G. et al. (2000) Vitamin D receptor polymorphisms and prostate cancer. Mol. Carcinog. 27, 18–23