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TGF- Requires CTLA-4 Early after T Cell Activation to
Induce FoxP3 and Generate Adaptive CD4"CD25™
Regulatory Cells'

Song Guo Zheng, Ju Hua Wang, William Stohl, Kyoung Soo Kim, J. Dixon Gray, and
David A. Horwitz>

Although positive CD28 costimulation is needed for the generation of natural CD4*CD25" regulatory T cells, we report that
negative CTLA-4 costimulation is necessary for generating phenotypically and functionally similar adaptive CD4"CD25" sup-
pressor cells. TGF-B could not induce CD4*CD25™ cells from CTLA-4~'~ mice to express normal levels of FoxP3 or to develop
suppressor activity. Moreover, blockade of CTLA-4 following activation of wild-type CD4™ cells abolished the ability of TGF-£
to induce FoxP3-expressing mouse suppressor cells. TGF-f3 accelerated expression of CTLA-4, and time course studies suggested
that CTLA-4 ligation of CD80 shortly after T cell activation enables TGF- to induce CD4*CD25~ cells to express FoxP3 and
develop suppressor activity. TGF- also enhanced CD4™" cell expression of CD80. Thus, CTLA-4 has an essential role in the
generation of acquired CD4*CD25™ suppressor cells in addition to its other inhibitory effects. Although natural CD4* CD25™ cells
develop normally in CTLA-4~'~ mice, the lack of TGF-B-induced, peripheral CD4*CD25" suppressor cells in these mice may

contribute to their rapid demise. The Journal of Immunology, 2006, 176: 3321-3329.

are essential for tolerance to self Ags, for immunologic

homeostasis and can also prevent allograft rejection (1,
2). CD4regs, however, are heterogeneous and can be divided into
subsets that develop naturally in the thymus or are acquired pe-
ripherally (3). Following our observations with CD8™" cells (4), we
reported that the combination of IL-2 and TGF-f induces naive or
total CD4"CD25™ cells to develop strong suppressive effects both
in vitro and in vivo (5-7). Others have also reported that TGF-£3
can induce activated CD4™" cells to become suppressor cells with
a phenotype and functional profile similar to natural CD4*CD25™
regulatory cells (8—10). Both natural and acquired CD4regs ex-
press FoxP3, the transcription factor that is responsible for their
development (8, 11, 12). Although it is known that CD28/B7 co-
stimulation is required for the development of natural CD4*
CD25" cells (13, 14), the costimulatory requirements for the gen-
eration of TGF-B-induced CD4regs have not been defined.
CTLA-4 and CD28 are homologs that each bind B7, but have
opposing functions. Although CD28 costimulates T cells, CTLA-4
inhibits T cell activation by blocking cytokine production and cell
cycle progression (15, 16). CTLA-4 is rapidly induced after T cell
activation and has striking inhibitory properties (17). Delivery of
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anti-CTLA-4 mAbs can abrogate the induction of Ag-specific tol-
erance, enhance tumor responses, and markedly enhance autoim-
mune diseases (17). CTLA-4 is essential for maintaining immune
homeostasis because genetically deficient mice develop a fatal
lymphoproliferative disease with multiple organ pathology shortly
after birth (18). This disease is T cell-mediated autoimmune be-
cause it is dependent upon costimulation and MHC class II (19).
Several mechanisms have been proposed to account for the in-
hibitory effects of CTLA-4: 1) because its affinity for B7 is greater
than CD28, CTLA-4 may compete successfully for B7 binding
sites on the Ag-presenting cell (20, 21); 2) CTLA-4 induces tryp-
tophan catabolic products that inhibit T cell activation (22, 23); 3)
cross-linking cell surface CTLA-4 may induce TGF-f production
(24), although this is controversial (25); 4) intracellular CTLA-4
can localize in the immunological synapse and interfere with TCR
signaling (26, 27); and 5) CTLA-4 appears to have a role in the
function of T regulatory (Treg)® cells (28—31), and one group sug-
gested a possible role in the generation of these cells (31).
Similar to CTLA-4-deficient mice (18), TGF-£ and FoxP3-de-
ficient (FoxP3~/7) mice all develop the fatal lymphoproliferative
syndrome indicated earlier (32, 33). Interestingly, forced expres-
sion of FoxP3 in CTLA-4~'~ mice delays the disease (34). Be-
cause TGF-B induces expression of FoxP3 and up-regulates
CTLA-4 expression, we asked whether CTLA-4 might be a critical
intermediate in this phenomenon. Studies in CTLA-4-deficient
mice have revealed that this is the case. Further studies with wild-
type CD4"CD25" cells provided additional support for the hy-
pothesis that CTLA-4 has an essential role in the development of
TGEF-B-induced CD4regs. In accessory cell-dependent T cell acti-
vation, our studies suggest that CTLA-4 ligation of CDS8O0 is re-
quired for TGF-p to induce FoxP3 and generate suppressor T cells.

3 Abbreviations used in this paper: HPRT, hypoxanthine guanine phosphoribosyl-
transferase; Treg, T regulatory.
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Materials and Methods

Animals

C57BL/6 mice were purchased from The Jackson Laboratory. CTLA-4
knockout mice were maintained as CTLA-4"/~ heterozygotes. CTLA-
47~ mice were generated by breeding male and female CTLA-4"/~ mice
and screening the offspring for the homozygous-deficient genotype (19).
Approximately 25% of the offspring were deficient genotype and 25% were
wild type and used as controls. TCR transgenic DO11.10 mice were a gift
from Dr. S. Stohlman (University of Southern California, Los Angeles,
CA). All animals were treated according to National Institutes of Health
guidelines for the use of experimental animals with the approval of the
University of Southern California Committee for the Use and Care of
Animals.

Reagents and Abs

PE-, FITC-, or CyChrome-conjugated anti-CD11b (M1/70), anti-CD8 (53-
6.7), anti-B220 (RA36B2), anti-CTLA-4 (UC10-4B9), anti-CD2 (PM2-5),
anti-MHC class I (28-14-8), an anti-cyclin D1 kit (DCS-6), and respective
matched control IgG Abs were obtained from BD Pharmingen. Conjugated
anti-CD3 (17A2), anti-CD4 (GK1.5), anti-CD25 (PC61.5), anti-CD103
(2E7), anti-CD80 (16-10A1), anti-CD86 (GL1) Abs, and matched control
IgG Abs were obtained from eBioscience. The goat anti-glucocorticoid-
induced TNFR polyclonal Ab and control IgG were purchased from R&D
Systems. Unconjugated anti-CD80 (16-10A1), anti-CD86 (GL1), anti-
CTLA-4 (9H10), or matched control IgG Abs (all from eBioscience) were
used for the neutralization experiments. Recombinant IL-2 and TGF-g1

Fresh cells

FIGURE 1. TGF-B induces the
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were purchased from R&D Systems. Anti-phospho-smad3 was a gift from
Dr. E. Leof (Mayo Clinic College of Medicine, Rochester, MN). Anti-CD3
and anti-CD28 coated beads were a gift from Dr. C. June (University of
Pennsylvania, Philadelphia, PA). TRIzol was purchased from Invitrogen
Life Technologies. AIM-V serum-free medium (Invitrogen Life Technol-
ogies) supplemented with 100 U/ml penicillin, 100 ug/ml streptomycin,
and 10 mM HEPES (all from Invitrogen Life Technologies) was used for
the generation of CD4" Treg or control cells. RPMI 1640 medium sup-
plemented as just described with 10% heat-inactivated FCS (HyClone) was
used for all other cultures.

Cell isolation and culture

T cells were prepared from lymph node and spleen cells by collecting
nylon wool column nonadherent cells as previously described (7). CD4* T
cells were isolated by negative selection. Briefly, T cells were labeled with
PE-conjugated anti-CD8, anti-CD11b, and anti-B220 mAbs, incubated
with anti-PE magnetic beads, and loaded onto MACS separation columns
(Miltenyi Biotec). The CD4 ™" cells were further labeled with FITC-conju-
gated anti-CD25 mAb, and CD4*CD25~ and CD4*"CD25" cells were
obtained by cell sorting (purity >98%). CD4"CD25~ cells were stimu-
lated either with soluble anti-CD3 (0.25 ug/ml) or OVA 323-339 peptide
(0.2 wg/ml) in the presence of irradiated (30 Gy) nylon adherent APC, or
with anti-CD3/CD28 coated beads with or without TGF-f (0.2-10 ng/ml)
in AIM-V serum-free medium for various days. In some experiments, anti-
CTLA-4 (4 pg/ml), anti-CD80 (10 pg/ml), anti-CD86 (10 wg/ml), or con-
trol IgG (4-10 wg/ml) was added to cultures. For studies of cyclin expres-
sion, CD47CD25~ cells were stimulated with soluble anti-CD3 from 24 to
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48 h and stained for intracellular cyclin D according to instructions pro-
vided by the manufacturer.

Assessment of Treg cell activity in vitro

To generate Treg cells, CD4"CD25  cells from either wild-type or
CTLA4™'~ mice were stimulated with anti-CD3 (0.25 wg/ml) in the pres-
ence of irradiated APC with TGF-B (2-10 ng/ml) (CD41gp_g) or without
(CD4,,.y) for 5 days. Various doses of CD4™" regulatory cells (CD4+Gr-p)
or control CD4" cells (CD4,,.,) were added to fresh T cells that were
activated with anti-CD3 (0.25 ug/ml) and in the presence of irradiated
APC. Proliferation was assayed by [*H]thymidine incorporation. In some
experiments, responder T cells were labeled with CFSE as previously de-
scribed (6), and inhibition of cycling T cells was assessed.

RT-PCR and real-time PCR

Total RNA was extracted from cells using TRIzol reagent and used to
determine the expression and relative level of the transcription factor
Foxp3 and CTLA-4. First strand cDNA was synthesized using Omniscript
Reverse Transcriptase kit with random hexamer primers. FoxP3 and HPRT
(hypoxanthine guanine phosphoribosyltransferase) mRNA was measured
by semiquantitative RT-PCR using published primers (35). Real-time PCR
was performed with a LightCycler, and message levels were quantified
using the LightCycler Fast Start DNA Master Green I kit according to the
manufacturer’s instructions. The relative expression of FoxP3 and CTLA-4
was determined by normalizing expression of each target to S-actin using
the primers: Foxp3, 5'-ACTGGGGTCTTCTCCCTCAA-3', 5'-CGTGG
GAAGGTGCAGAGTAG-3"; CTLA-4, 5'-GTTGGGGGCATTTTCACA
TA-3', 5'-TTTTACAGTTTCCTGGTCTC-3'; and B-actin, 5'-TGACAG
GATGCAGAAGGAGA-3', 5'-GTACTTGCGCTCAGGAGGAG-3'.

Western blot analysis

A total of 5 X 10° cells from wild-type and CTLA-4~'~ mice was incu-
bated at 37°C for 30 min with TGF-f (0.2, 2 ng/ml) or without, lysed, and
probed for expression of phospho-smad3 by Western blot analysis with an
anti-phospho-smad3 polyclonal Ab provided by Dr. E. B. Leof. The load-
ing was confirmed by anti-actin Ab (Sigma-Aldrich).

Statistical analysis

Statistical comparison between various groups was performed by the 7 test
using GraphPad PRISM software (GraphPad).
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Results

Although endogenous CD4"CD25% cells from CTLA-4~'~
mice express FoxP3 mRNA (31) (Fig. 1A), TGF-B had a mark-
edly decreased ability to induce CD4"CD25~ cells from these
animals to express this transcription factor. Previous workers
have reported that CD4*CD25 " regulatory cells in CTLA-4 '~
mice display suppressive activity (28, 31). Although Takahashi
et al. (28) indicated that this activity was reduced, Tang and
coworkers (31), using a mouse model that minimized activated
CD25™" cells, found that endogenous CD4"CD25" cells from
CTLA-4"'" mice expressed FoxP3 and that their suppressive
activity was intact.

The different effects of TGF-B on CD4"CD25 cells from
CTLA-4'~ mice and wild-type mice on FoxP3 expression was
striking whether T cells were stimulated by anti-CD3 with acces-
sory cells or with accessory cell-independent anti-CD28 costimu-
lation (Fig. 1A). TGF-$ at 2 ng/ml was the optimal concentration
needed for this cytokine to induce suppressor cells in wild-type
mice (Fig. 2A). This amount of TGF-£ failed to induce FoxP3
expression in CTLA-4~/~ mice as measured by semiquantitative
and real-time PCR (Fig. 1, B and C). Dose-response studies re-
vealed that TGF-f3 at 10 ng/ml, five times the optimal concentra-
tion, only weakly induced FoxP3 in these mice (Fig. 1, B and C).
Even this concentration of TGF-B was unable to induce
CD4+CD25 cells from CTLA-4~'~ mice to develop suppressive
activity (Fig. 2B). Time course studies revealed that TGF- rapidly
induced and sustained FoxP3 mRNA in wild-type mice, but
CD4"CD25 cells from deficient mice did not express FoxP3 at
any time point tested (Fig. 1D).

The inability of TGF-f to induce FoxP3 could not be explained
by a failure of T cells from CTLA-4 '~ to respond to TGF-p.
Following binding to specific receptors TGF-f3 phosphorylates
various Smads to initiate its inhibitory effects. Fig. 3A shows that
treatment of CTLA-4-deficient and wild-type CD4"CD25~ cells
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cells from wild-type or CTLA-4 /" mice were in-
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with TGF- resulted in similar phosphorylation of Smad3. More-
over, various doses of TGF-f similarly inhibited the T cell pro-
liferative response of both wild-type and CTLA-4-deficient mice
to anti-CD3 (Fig. 3B).

We next considered whether CTLA-4 was needed for TGF-f to
induce expression of FoxP3 in wild-type mice. As shown in Fig. 4,
the addition of anti-CTLA-4 to CD4"CD25 " cells stimulated with
anti-CD3 plus APC (Fig. 4A) or anti-CD3/28 beads (Fig. 4B), com-
pletely abolished the ability of TGF-f3 to induce FoxP3 mRNA. By
contrast, expression of glucocorticoid-induced TNFR and CD103
was increased (data not shown). We also used anti-MHC class |
and anti-CD2 Abs as controls to exclude the possibility that IgG
binding to the T cell surface membrane can nonspecifically inhibit
TGF-B-induced expression of FoxP3 (data not shown). In addition
to polyclonally activated cells, we also documented that the addi-
tion of anti-CTLA-4 blocked FoxP3 expression by Ag-specific
stimulation in the presence of TGF-f (Fig. 4C).

Anti-CTLA-4 also abolished the ability of TGF-f to induce sup-
pressor cells. Fig. 5 shows that the suppressive activity of CD4™
cells generated with anti-CTLA-4 was abolished as indicated by
reduced numbers of total T cells (Fig. 54) and cycling CD8" or
CD8" cells (Fig. 5, B and C).

Next, we considered the mechanism of action of CTLA-4. This
inhibitory element is generally expressed by T cells 2 to 3 days after
activation (16). However, June and colleagues (36) have reported that
CTLA-4 has early effects on the threshold of T cell activation before
itis detectable by flow cytometry. Previously, we reported that TGF-£3
needed to be present at the onset of T cell activation to induce either
CD8™" or CD4™* cells to develop suppressive effects (4, 6). Although
we and others have reported that TGF-B enhances expression of
CTLA-4 (5, 6, 8, 37, 38), we also considered that TGF-8 may accel-
erate its appearance. Fig. 6 shows that, indeed, this effect is the case.
TGF- markedly increased expression of CTLA-4 mRNA during the
first 3 h after T cell activation. Increased surface expression of
CTLA-4 induced by TGF-f3 was not observed until 24 h of culture. As
expected, therefore, anti-CTLA-4 maximally inhibited FoxP3 expres-
sion when added at the start of the cultures (Fig. 7). The inhibitory
activity was no longer present if added 2 days after T cell activation.
Thus, small amounts of intracellular CTLA-4 may have a consider-
able effect in the development of peripheral CD4regs.

We next asked whether CTLA-4 required B7 ligation for its
effect on FoxP3 expression. Using soluble anti-CD3 and APC,
studies with blocking Abs revealed that anti-CD80, but not anti-
CDS86, inhibited TGF-B-induced expression of FoxP3. Similar to
anti-CTLA-4, the greatest inhibitory effect of CD80 was when the
mAb was added at the start of the culture. The inhibitory effect of
anti-CD80, however, was less than anti-CTLA-4 (Fig. 7). The
greater effect of anti-CD80 than CD86 is consistent with other
reports that these two homologs differentially modulate the sup-
pressive activities of CD4"CD25" Treg cells. In these studies
CDB80 was the preferential ligand for CTLA-4 (39, 40).

We indicated earlier that anti-CTLA-4 could block TGF-f-in-
duced FoxP3 expression by CD4 ™ cells stimulated without acces-
sory cells. Another report has shown that activated CD4 ™ cells can
express B7 (41). Therefore, we assessed B7 expression by CD4™
cells stimulated with anti-CD3/28 beads with or without TGF-£.
Not only did we find CD80 expressed by stimulated CD4"CD25~
cells, but also we found that TGF- significantly enhanced expres-
sion of CD80, but not CD86 (Fig. 8).

To learn the functional consequences of accelerated CTLA-4
expression by TGF-$, we determined the effect of antagonizing
this molecule on cyclin D expression, intracellular proteins nor-
mally silent, but expressed by cycling T cells (Fig. 9). Following
stimulation by soluble anti-CD3, TGF-f transiently inhibited cy-
clin D1 expression (Fig. 9, A and B). This suppressive effect was
observed during the first 24 h of culture, and inhibition of [3H]thy—
midine incorporation was also observed (p = 0.01). The addition
of anti-CTLA-4 blocked both the inhibitory effects of TGF-3 on
cyclin D expression and partially blocked inhibition of T cell pro-
liferation (Fig. 9C). Thus, early inhibition of TGF- on T cell
proliferation reflects the combined effects of TGF-£ and CTLA-4
induced by this cytokine. By 48 h of culture TGF-f inhibition of
cyclin D was no longer present (Fig. 9B). In fact, costimulatory
effects of TGF-B become evident after this time (5, 6).

Discussion

The principal findings of this study are that TGF-f accelerates the
expression of CTLA-4 by stimulated CD4"CD25™ T cells, and
that like TGF-B, CTLA-4 is needed early after T cell activation for
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FIGURE 4. Absto CTLA-4 block the induction of FoxP3 expression on
activated CD4*CD25 " cells in wild-type mice. A, CD4"CD25 " cells from
wild-type mice were stimulated with soluble anti-CD3 with TGF-B1 or
without as described Fig. 2. Anti-CTLA-4 Ab (4 wg/ml) or control IgG (4
ng/ml) was added to some TGF-f cultured wells. B, These cells were also
stimulated with anti-CD3 and anti-CD28 beads (1/20) with TGF-B1 (2
ng/ml) or without for 5 days, with anti-CTLA-4 Ab added as in A. FoxP3
mRNA was determined by RT-PCR. This result is representative of four
independent experiments. C, CD4"CD25™ cells from DO11.10 transgenic
(TCR Tg) mice were stimulated with OVA 323-339 peptide (0.2 ug/ml)
with TGF-B1 (2 ng/ml) or without for 5 days, with anti-CTLA-4 Ab added
as in A. The levels of FoxP3 were analyzed by semiquantitative RT-PCR
after normalization to HPRT.

TGF-B to induce these cells to become CD4"CD25 "FoxP3™ sup-
pressor cells. Blocking the activity of CTLA-4 during the first 24 h
following polyclonal or Ag-specific T cell stimulation also blocked
the ability of TGF-f to induce FoxP3. Previously, we reported that
TGF-B must be present during the first 24 h following activation to
induce CD8" or CD4* cells to become Treg cells (4, 6)

Our observations are consistent with other reports suggesting
that T cell differentiation is determined by the duration and quality
of the activating signals (42, 43). T cells respond to antigenic chal-
lenge when the number of TCR triggered reached an appropriate
threshold (43). To become effector cells, T cells require strong,
persistent stimulation. Mature APC bearing B7 and other co-
stimulatory molecules provide stable, long-lasting TCR con-
tacts that permit this differentiation. Immature APC, however,
lack sufficient costimulatory molecules, and their brief contacts

3325

with T cells drive them to become anergic, a characteristic fea-
ture of Treg cells (44). CTLA-4 can destabilize CD28 binding
the immunological synapse with APC (27) and interfere with T
cell activation by B7-dependent or -independent effects (45).
The relatively greater effects of CD80 in comparison with CD86
in enhancing TGF-B-induced FoxP3 expression is consistent
with the greater binding affinity of CD80 for CTLA-4 (27, 39,
40). Thus, the combined inhibitory effects of TGF-B and
CTLA-4 may convert strong, stable activating signals to brief
unstable signals that favor anergy, expression of FoxP3, and
Treg differentiation. To our knowledge, this is the first report
that TGF-B can enhance T cell expression of CD80.

Another group has recently reported a role for CTLA-4 in the
generation of alloantigen-specific CD4"CD25" Treg cells. The
transfer of allogeneic cells coated with anti-CTLA-4 into intact
mice resulted in increased numbers of CD4"CD25™ cells express-
ing CTLA-4 (46). Others have also reported that CTLA-4 engage-
ment can up-regulate IL-10 and TGF-B (24, 47). Finally, FoxP3
has been reported to up-regulate CTLA-4 expression (48). Thus a
TGF-B/CTLA-4/FoxP3/CTLA-4 positive loop may be vital for the
generation and maintenance of acquired CD4*CD25™ Treg cells.
This relationship may explain why TGF-B1-deficient, CTLA-4-
deficient, and FoxP3-deficient mice all develop a similar, rapidly
fatal T cell-mediated, autoimmune lymphoproliferative disease
shortly after birth (18, 32-34). Although natural CD4"CD25*
cells develop in the thymus of CTLA-4~'~ mice (31), these cells,
by themselves, cannot prevent this overwhelming autoimmune
disease.

To learn how signals from CTLA-4 synergize with signals from
TGF-B to induce FoxP3 expression, we determined the effect of
blocking CTLA-4 on the ability of TGF-£ to inhibit T cell func-
tion. Evidence was obtained that blocking CTLA-4 markedly de-
creased the ability of TGF-f to inhibit early cyclin D expression
and T cell proliferation. Thus, the combined inhibitory activities of
TGF-B and CTLA-4 induced by this cytokine may decrease T cell
activating signals to levels that induce FoxP3 instead of the tran-
scription factors responsible for Th cell differentiation (49).

TGF-B signaling involves Smad-dependent and -independent
pathways (50) and the signaling pathways responsible for up-reg-
ulation of CTLA-4 remain to be elucidated. It is known, however,
that TGF-B-activated Smads result in expression of c-fos (51), and
it is possible that Smad-AP-1 interactions may affect CTLA-4 ex-
pression. The CTLA-4 promoter contains an AP-1 binding site
(14). It has also been reported that both TGF-f and cAMP can
increase CD40L expression, and a relationship between TGF-£
and protein kinase A has been reported (52, 53). Thus, both Smad-
dependent and -independent signaling pathways may be involved.

Other elements besides TGF-3 appear to up-regulate FoxP3 ex-
pression. Recently, it has been reported that PGE, has this property
(54). This agent up-regulates cAMP, and this element also can
up-regulate CTLA-4 (55). Another group has reported that imma-
ture APCs whose maturation was blocked by a proteosome inhib-
itor also induce CD4™ cells to express FoxP3 and develop sup-
pressive effects (56). In each of these studies, expression of CD25
was not enhanced. By contrast, TGF-B up-regulates FoxP3 and
enhances IL-2 signaling by up-regulating CD25 and CD122, the -
and B-chain of the IL-2R (5, 6, 12, 38, 57). Because of the im-
portance of IL-2 in the development of Treg activity (58, 59), the
combined effects of TGF-B on FoxP3 expression and enhanced
IL-2 signaling probably explain the potent in vivo effects of
CD4regs induced with TGF-f (S. G. Zheng, L. Meng, J. H. Wang,
M. Watanabe, M. L. Barr, D. V. Cramer, J. D. Gray, and D. A.
Horwitz, submitted for publication) (7, 8, 63). We have found that
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FIGURE 6. TGF-B accelerates CTLA-4 expression by CD4" cells. A,
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TGF-B1 (2 ng/ml) or without for the hours indicated and CTLA-4 mRNA
was determined by real-time PCR. Mean = SEM is determined in relative
units of triplicate samples and indicates level of CTLA-4 compared with
B-actin. The result shown is one of two experiments. B, Surface expression
of CTLA-4 of CD4"CD25 " cells stimulated with soluble anti-CD3 with or
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FIGURE 7. CTLA-4 and CD80 are required at the onset of T cell ac-
tivation for maximal expression of TGF-B-induced FoxP3. CD4"CD25~
cells were stimulated with soluble anti-CD3 with or without TGF-B1 as
described. Various blocking Abs or control IgG were added to cultures
containing TGF-f at the days indicated. FoxP3 mRNA was determined by
a semiquantitative RT-PCR. The result is representative of three separate
experiments.
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considered to sustain allograft survival (61). This agent, however,
will also block CTLA-4 ligation to B7. Because CTLA-4 has an
important role in the maintenance of immunologic tolerance (62),
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