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Application of Nanotechnology
in Cancer Therapy and Imaging

Xu Wang, PhD; Lily Yang, MD; Zhuo (Georgia) Chen, PhD; Dong M. Shin, MD

ABSTRACT Recent developments in nanotechnology have provided researchers with new

tools for cancer imaging and treatment. This technology has enabled the development of

nanoscale devices that can be conjugated with several functional molecules simultaneously,

including tumor-specific ligands, antibodies, anticancer drugs, and imaging probes. Since these

nanodevices are 100 to 1,000-fold smaller than cancer cells, they can be easily transferred

through leaky blood vessels and interact with targeted tumor-specific proteins both on the sur-

face of and inside cancer cells. Therefore, their application as cancer cell-specific delivery vehi-

cles will be a significant addition to the currently available armory for cancer therapeutics and

imaging. (CA Cancer J Clin 2008;58:97–110.) © American Cancer Society, Inc., 2008.

INTRODUCTION

Cancer is one of the major causes of mortality in the United States, and the world-
wide incidence of cancer continues to increase. The most common cancer treat-
ments are limited to chemotherapy, radiation, and surgery. Frequent challenges
encountered by current cancer therapies include nonspecific systemic distribution of
antitumor agents, inadequate drug concentrations reaching the tumor, and the lim-
ited ability to monitor therapeutic responses. Poor drug delivery to the target site leads
to significant complications, such as multidrug resistance.

Greater targeting selectivity and better delivery efficiency are the 2 major goals in
the development of therapeutic agents or imaging contrast formulations. Ideally, a
therapeutic drug would be selectively enriched in the tumor lesions with minimal
damage to normal tissues. A rational approach to achieve these goals is to conjugate therapeutic drugs with mono-
clonal antibodies (mAbs) or other ligands that selectively bind to antigens or receptors that are usually abundantly or
uniquely expressed on the tumor cell surface. Several ligand-targeted therapeutic strategies, including immunotox-
ins, radioimmunotherapeutics, and drug immunoconjugates, are being developed. Although these conjugated agents
have demonstrated promising efficacy compared with conventional chemotherapy drugs in preclinical and clinical
trials,1 limitations in their delivery efficiency and specificity remain. For example, in vivo studies have shown that
only 1 to 10 parts per 100,000 of intravenously administered mAbs, therapeutic, or imaging agents can reach their parenchy-
mal targets.2,3

At present, noninvasive imaging approaches, including x-ray–based computer-assisted tomography (CT), positron
emission tomography (PET), single-photon emission tomography, and magnetic resonance imaging (MRI), are used
as important tools for detection of human cancer.4–9 The development of tumor-targeted contrast agents based on a
nanoparticle formulation may offer enhanced sensitivity and specificity for in vivo tumor imaging using currently
available clinical imaging modalities.

By applying a vast and diverse array of nanoparticles, whose design derives from the engineering, chemistry, and
medicine fields, to molecular imaging and targeted therapy, cancer nanotechnology promises solutions to several of
the current obstacles facing cancer therapies. Nanoparticles have a mesoscopic size range of 5 to 200 nm, allowing their
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unique interaction with biological systems at the
molecular level. As a result of their material com-
position, nanoparticles are capable of self-assem-
bly and maintaining stability and specificity,
which are crucial to drug encapsulation and bio-
compatibility. Recent progress in cancer nano-
technology raises exciting opportunities for
personalized oncology in which diagnosis and
treatment are based on the molecular profiles of
individual patients.

In this review, we will address first the types
and characteristics of nanoparticles; second, how
nanoparticles can be used as drug delivery sys-
tems and imaging devices to increase the effi-
cacy per dose of therapeutic or imaging contrast
agents; and last, how nanoparticles will be fur-
ther developed to improve their functionality in
cancer treatment and imaging.

NANOPARTICLES FOR TUMOR TARGETING
AND DELIVERY

Types of Nanoparticles as Drug Delivery Systems

Nanoparticles can consist of a number of
materials, including polymers, metals, and ceram-
ics. Based on their manufacturing methods and
materials used, these particles can adopt diverse
shapes and sizes with distinct properties. Many
types of nanoparticles are under various stages
of development as drug delivery systems, includ-
ing liposomes and other lipid-based carriers (such

as lipid emulsions and lipid-drug complexes),
polymer-drug conjugates, polymer microspheres,
micelles, and various ligand-targeted products
(such as immunoconjugates).10–13

Liposomes and Other Lipid-based Nanoparticles

Liposomes are self-assembling, spherical, closed
colloidal structures composed of lipid bilayers that
surround a central aqueous space. Liposomes are
the most studied formulation of nanoparticle for
drug delivery (Table 1). Several types of anticancer
drugs have been developed as lipid-based systems
by using a variety of preparation methods. Lipo-
somal formulations have shown an ability to
improve the pharmacokinetics and pharmacody-
namics of associated drugs.1 To date, liposome-
based formulations of several anticancer agents
(Stealth liposomal doxorubicin [Doxil], liposo-
mal doxorubicin [Myocet], and liposomal daunoru-
bicin [DaunoXome]) have been approved for the
treatment of metastatic breast cancer and Kaposi’s
sarcoma.2,14,15,17,30–32

First generation liposomes have an unmodi-
fied phospholipid surface that can attract plasma
proteins, which in turn trigger recognition and
uptake of the liposomes by the mononuclear
phagocytic system (MPS), which is synonymous
with the reticuloendothelial system,1 resulting
in their rapid clearance from the circulation.
This property impedes the distribution of lipo-
somes and their associated drug to solid tumors
or other non-MPS sites of drug action. Second
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TABLE 1 Examples of Liposomal Nanoparticles in Clinical Development

Compound Name Status Indication References

Liposomal daunorubicin DaunoXome Market Kaposi’s sarcoma 14
PEG-immunoliposome-doxorubicin MCC-465 Phase I Various cancers, particularly stomach cancer 15, 16
Stealth liposomal doxorubicin Doxil/Caelyx Market Kaposi’s sarcoma; refractory ovarian cancer; 17, 18

refractory breast cancer
Liposomal doxorubicin Myocet Market (Europe) Metastatic breast cancer in 1, 17, 18

combination with cyclophosphamide
Liposomal cisplatin SPI-077 Phase II Various cancers 19–21
Liposomal interleukin 2 Oncolipin Phase II Immune stimulant for use with a liposomal 22

vaccine against non-small-cell lung cancer
Liposomal thymidylate synthase inhibitor OSI-7904L Phase II Advanced solid cancer 23, 24
Liposomal paclitaxel LEP ETU Phase I/II Advanced solid tumors 25
Liposomal SN38 or liposomal LE-SN38 Phase I/II Advanced solid tumors 26, 27

irinotecan metabolite
Liposomal lurtotecan OSI-211 Phase II Recurrent ovarian cancer; recurrent 28

small cell-lung cancer
Liposomal oxaliplatin Aroplatin Phase II Advanced colorectal cancer 29

Abbreviation: PEG, polyethylene glycol.
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generation liposomal drugs are being developed
in an effort to evade MPS recognition and sub-
sequent clearance. Surface-modified liposomes
(Stealth) have hydrophilic carbohydrates or poly-
mers, which usually are lipid derivatives of poly-
ethylene glycol (PEG) grafted to the liposome
surface.1,33–35 While this surface modification
has solved the problem of fast clearance from
the circulation, yielding liposomes with a sig-
nificantly increased half-life in the blood, the
challenge remains to attain preferential accumu-
lation of liposomes in tumor tissues. One strat-
egy to achieve tumor-specific targeting is to
conjugate a targeting moiety on the outer sur-
face of the lipid bilayer of the liposome that
selectively delivers drug to the desired site of
action.36–42 For example, an immunoliposome
has antibodies or antibody fragments conjugated
on its outer surface, usually at the terminus of
PEG. Several studies have documented improved
therapeutic efficacy of immunoliposomes tar-
geted to internalizing antigens or receptors com-
pared with that of nontargeted liposomes.42–45

An in vitro study of a liposome formulation of
doxorubicin (DOX) targeted to the internaliz-
ing antigen CD44 on B16F10 melanoma cells
showed enhanced intracellular drug uptake from
the targeted liposomes when compared with the
free form of DOX. The enhanced uptake was
correlated with enhanced cell killing efficacy.46

A liposomal formulation of cisplatin that lacked
efficacy demonstrated encouraging therapeutic
results when delivered in an immunoliposome
targeted to an internalizing antigen.35,40 Recently,
promising results were reported from a Phase I
clinical study that evaluated the effect of MCC-
465, a PEGylated liposomal formulation con-
taining DOX targeted with an F(ab’)2 fragment
of a human mAb named GAH, in patients with
metastatic stomach cancer.16,47

Polymeric Nanoparticles

To reach the targeted tumor tissue, nanopar-
ticles must be able to stay in the bloodstream for
considerable lengths of time without being elim-
inated. Nanoparticles with no surface modifi-
cation are usually caught by the MPS, primarily
the liver and spleen, during circulation, depend-
ing on their size and surface characteristics.11 To
overcome this problem, nanoparticles can be

coated with hydrophilic polymers. Coating can
efficiently protect nanoparticles from capture by
macrophages.48–50 The increased hydration also
helps nanoparticles to be more water soluble and
less sensitive to enzymatic degradation, there-
fore enhancing biocompatibility.50,51

During the past decade, the application of
polymer-based drug delivery systems in oncology
has grown exponentially with the advent of
biodegradable polymers. In these polymers, drugs
are either physically dissolved, entrapped, encap-
sulated, or covalently attached to the polymer
matrix.52 The resulting compounds may have
different structures, including micelles and den-
drimers. Both natural (albumin, chitosan, heparin,
etc.) and synthetic (poly-L-lactide, poly-[L-
glutamate], poly-[D,L-lactide-co-glycolide], PEG,
etc.) biodegradable polymers are being exploited
as drug delivery systems.

Recently, a nanoparticle formulation of pacli-
taxel bound to albumin (Abraxane or ABI-007)
was approved for the treatment of metastatic
breast cancer.53–55 In a Phase III clinical trial,
ABI-007 showed greater therapeutic efficacy and
increased response compared with free pacli-
taxel.53,55 Currently, more than 10 formulations
of anticancer polymeric nanoparticles have entered
clinical development, including paclitaxel
poliglumex (Xyotax),56,57 N-(2-hydroxypropyl)
methacrylamide (HPMA) copolymer-camp-
tothecin (MAG-CPT),58,59 and HPMA-DOX
(PK1)60 (Table 2). In Phase I/II clinical trials,
HPMA-DOX showed a 4 to 5-fold reduction
in anthracycline-related toxicity.63,64,76 At DOX-
equivalent doses of 80 to 320 mg/m2, the drug
still displayed significant antitumor activity in
chemotherapy-refractory patients (including those
with breast cancer).76 A recent Phase III trial
showed that paclitaxel poliglumex (Xyotax) was
less toxic than free paclitaxel and could prolong
the survival of non-small-cell lung cancer patients
with poor performance status.61,77 Also, pacli-
taxel poliglumex can be used as a novel radiation
sensitizer.78

Targeted Delivery of Therapeutic Nanoparticles

In principal, nanoparticle delivery of anti-
cancer drugs to tumor tissues can be achieved
by either passive or active targeting.
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Passive Targeting

Passive targeting takes advantage of the inher-
ent size of nanoparticles and the unique proper-
ties of tumor vasculature, such as the enhanced
permeability and retention (EPR) effect and the
tumor microenvironment.79–82 This approach can
effectively enhance drug bioavailability and efficacy.

EPR Effect. Angiogenesis is crucial to tumor
progression. Angiogenic blood vessels in tumor
tissues, unlike those in normal tissues, have gaps
as large as 600 to 800 nm between adjacent
endothelial cells.18,83 This defective vascular
architecture coupled with poor lymphatic
drainage induces the EPR effect,83–86 which

allows nanoparticles to extravasate through these
gaps into extravascular spaces and accumulate
inside tumor tissues87 (Figure 1). Dramatic
increases in tumor drug accumulation, usually
of 10-fold or greater, can be achieved when a
drug is delivered by a nanoparticle rather than
as a free drug.88 However, the localization of
nanoparticles within the tumor is not homo-
geneous. The factors that result in high con-
centrations of nanoparticles in one part of the
tumor tissue but not in other parts are not well
understood yet.89 In general, the accumulation
of nanoparticles in tumors depends on factors
including the size, surface characteristics, and
circulation half-life of the nanoparticle and the
degree of angiogenesis of the tumor. Usually,
less nanoparticle accumulation is seen in pre-
angiogenic or necrotic tumors.18

Tumor Microenvironment. Hyperproliferative
cancer cells have profound effects on their sur-
rounding microenvironment. Tumors must adapt
to use glycolysis (hypoxic metabolism) to obtain
extra energy, resulting in an acidic microenvi-
ronment.81 In addition, cancer cells overexpress
and release some enzymes that are crucial to
tumor migration, invasion, and metastasis, includ-
ing matrix metalloproteinases (MMPs).82 Tumor-
activated prodrug therapy is an example of passive
targeting that takes advantage of this character-
istic of the tumor-associated microenvironment.
A nanoparticle conjugating an albumin-bound
form of DOX with an MMP-2–specific peptide

Application of Nanotechnology in Cancer Therapy and Imaging

100 CA A Cancer Journal for Clinicians

TABLE 2 Examples of Polymeric Nanoparticles in Clinical Development

Compound Name Status Indication References

Albumin-paclitaxel Abraxane or ABI-007 Market Metastatic breast cancer 53–55
Paclitaxel-poliglumex CT-2103; Xyotax Phase III Various cancers, particularly non-small-cell 57, 61

lung cancer; ovarian cancer
PEG-aspartic acid-doxorubicin micelle NK911 Phase I Pancreatic cancer 15, 62
HPMA copolymer-doxorubicin PK1; FCE28068 Phase II Various cancers, particularly lung 63, 64

and breast cancer
HPMA copolymer-doxorubicin- PK2; FCE28069 Phase I/II Particularly hepatocellular carcinoma 65

galactosamine
HPMA copolymer-paclitaxel PNU166945 Phase I Various cancers 66
HPMA copolymer-camptothecin MAG-CPT Phase I Various cancers 58, 59
HPMA copolymer-platinate AP5280 Phase I/II Various cancers 67
HPMA copolymer-DACH-platinate AP5346 Phase I/II Various cancers 68, 69
Dextran-doxorubicin AD-70, DOX-OXD Phase I Various cancers 70
Modified dextran-camptothecin DE-310 Phase I/II Various cancers 71–73
PEG-camptothecin Prothecan Phase II Various cancers 74, 75

Abbreviations: PEG, polyethylene glycol; DACH, diaminocyclohexane; HPMA, N-(2-hydroxypropyl)methacrylamide.

FIGURE 1 Passive Tumor Targeting with Nanoparticle
Drugs. Long-circulating therapeutic nanoparticles accu-
mulate passively in solid tumor tissue by the enhanced
permeability and retention effect. The hyperpermeable
angiogenic tumor vasculature allows preferential extrava-
sation of circulating nanoparticles.
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sequence (Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln)
was efficiently and specifically cleaved by MMP-
2.90 When certain pH-sensitive molecules are
incorporated into liposomes, drugs can be specif-
ically released from the complexes by a change
in pH.91 The pH-sensitive liposomes are stable
at physiologic conditions (pH 7.2), but degraded
in tumor-associated acidic areas. Likewise, ther-
molabile liposomes are expected to be activated
by the local hyperthermic microenvironment.92

Active Targeting

The polymeric nanoparticles that have been
tested clinically so far have mostly lacked a tar-
geting moiety and instead rely mainly on the EPR
effect of tumors, the tumor microenvironment, and
tumor angiogenesis to promote some tumor-
selective delivery of nanoparticles to tumor tis-
sues. However, these drug delivery systems using
a binary structure conjugate inevitably have intrin-
sic limitations to the degree of targeting speci-
ficity they can achieve. In the case of the EPR
effect, while poor lymphatic drainage on the one
hand helps the extravasated drugs to be enriched
in the tumor interstitium, on the other hand, it
induces drug outflow from the cells as a result of
higher osmotic pressure in the interstitium, which

eventually leads to drug redistribution in some
portions of the cancer tissue.93

An alternative strategy to overcome these lim-
itations is to conjugate a targeting ligand or an
antibody to nanoparticles. By incorporating a
targeting molecule that specifically binds an anti-
gen or receptor that is either uniquely expressed
or overexpressed on the tumor cell surface, the
ligand-targeted approach is expected to selec-
tively deliver drugs to tumor tissues with greater
efficiency (Figure 2). Such targeted nanoparti-
cles may constitute the next generation of poly-
meric nanoparticle drug delivery systems. Indeed,
several targeted polymeric nanoparticles are cur-
rently undergoing preclinical studies.65,77,94–96

One of these, HPMA copolymer-DOX-galac-
tosamine (PK2, FCE28069), has progressed to
a clinical trial. In this nanoparticle, galactosamine
moieties bind to the asialoglycoprotein recep-
tor on hepatocytes.65,76 In a Phase I/II study,
this targeted nanoparticle showed 12- to 50-fold
greater accumulation than the free DOX in hepa-
tocellular carcinoma tissue. Antitumor activity
was observed in patients with primary hepato-
cellular carcinoma in this study.65,76 These prom-
ising early clinical results suggest the potential
of targeted polymeric nanoparticles as anticancer
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FIGURE 2 Internalization of Nanoparticles via Receptor-mediated Endocytosis. Nanoparticle-conjugated tumor-specific
ligands/antibodies bind to surface receptors, triggering nanoparticle internalization through an endosome-dependent
mechanism. As the interior of the endosome becomes more acidic, drugs are released from the nanoparticle into the
cytoplasm.  by on N
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drug delivery systems. Lessons have also been
learned from many of the early clinical studies.
For example, the failure of HPMA conjugates
of paclitaxel and camptothecin in Phase I clin-
ical trials was reported. Such negative outcomes
underline the importance of polymer-drug
design.66,97

Choice of Target Receptor. Selection of the appro-
priate receptor or antigen on cancer cells is
crucial for the optimal design of targeted nano-
particles. The ideal targets are those that are abun-
dantly and uniquely expressed on tumor cells,
but have negligible or low expression on normal
cells. The targeted antigen or receptor should
also have a high density on the surface of the tar-
get tumor cells. Whether the targeted nanocon-
jugate can be internalized after binding to the
target cell is another important criterion in the
selection of proper targeting ligands. In the case
of an antibody or other ligand that cannot trig-
ger the internalization process, the drug can enter
cells through simple diffusion or other transport
system after being released from the targeted con-
jugate at or near the cell surface. However, drug
released outside the cell may disperse or redis-
tribute to the surrounding normal tissues rather
than exclusively to the cancer cells. In vitro and
in vivo comparisons using internalizing or non-
internalizing ligands have shown that the intra-
cellular concentration of drug is much higher
when the drug is released from nanoparticles in
the cytoplasm after internalization.43,98

Choice of Targeting Ligand. One of the great-
est challenges to the design of nanoparticles that
can selectively and successfully transport drug
to cancerous tissues is the choice of targeting
agent(s). This strategy also relies on the ability
of the targeting agent or ligand to bind the tumor
cell surface in an appropriate manner to trigger
receptor-mediated endocytosis. The therapeu-
tic agent will thereby be delivered to the interior
of the cancer cell.85 A variety of tumor-target-
ing ligands, such as antibodies, growth factors,
or cytokines, have been used to facilitate the
uptake of carriers into target cells.90,92,99–107

Ligands targeting cell-surface receptors can
be natural materials like folate and growth fac-
tors, which have the advantages of lower molec-
ular weight and lower immunogenicity than
antibodies. However, some ligands, such as folate

that is supplied by food, show naturally high con-
centrations in the human body and may com-
pete with the nanoparticle-conjugated ligand for
binding to the receptor, effectively reducing the
intracellular concentration of delivered drug.
Recent advances in molecular biology and genetic
engineering allow modified antibodies to be used
as targeting moieties in an active-targeting
approach. MAbs or antibody fragments (such as
antigen-binding fragments or single-chain vari-
able fragments) are the most frequently used lig-
ands for targeted therapies. Whole mAbs have
2 binding domains showing high binding avid-
ity. The Fc domain of the mAb can induce
complement-mediated cytotoxicity and anti-
body-dependent, cell-mediated cytotoxicity,
leading to additional cell-killing effect. On the
other hand, the Fc domain also initiates an
immune response and can be rapidly eliminated
in the circulation, resulting in decreased accumu-
lation of targeted nanoparticles into cancer cells.13

Compared with whole mAbs, the use of anti-
body fragments as a targeting moiety can reduce
immunogenicity and improve the pharmacoki-
netic profiles of nanoparticles.1 For example, lipo-
somes coupled with mAb fragments instead of
whole antibodies showed decreased clearance rates
and increased circulation half-lives, allowing the
liposomes sufficient time to be distributed and
bind to the targeted cells.1,39 This strategy improved
the therapeutic efficacy of immunoliposomal
DOX targeted against CD19 on human B lym-
phoma cells in animal models.1,39

Reduction or Reversion of Multidrug Resistance

Drug resistance is one of the major obstacles
limiting the therapeutic efficacy of chemother-
apeutic or biologic agents. In the clinic, chemo-
resistance is defined as either a lack of tumor-size
reduction or the occurrence of clinical relapse
after an initial positive response to antitumor
treatment. Drug resistance can be caused by (1)
physiological barriers (noncellular-based mech-
anisms) or (2) alterations in the biochemistry of
cancer cells (cellular mechanisms). First, non-
cellular drug-resistance mechanisms can be due
to physiological barriers, which protect cancer-
ous cells from drug-induced cytotoxicity. One of
the most effective barriers in the body is the
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blood-brain barrier (BBB) that restricts the entry
of anticancer agents to the brain from the periph-
ery.108 The low permeability of the BBB is mainly
attributed to microvessel endothelial cells in the
brain. These cells contain an extremely active
efflux pump system, similar to that identified in
tumor cells, which removes a large volume of
agents from the brain to the blood. A recent
study showed that ulex europeus agglutinin I-
conjugated nanoparticles can effectively bypass
the BBB.109 The acidic environment in tumors
can also result in resistance to basic drugs through
neutralization. Further, high interstitial pressure
and low microvascular pressure may also impede
extravasation of drug molecules. Secondly, resist-
ance of tumors to therapeutic intervention may
be due to cellular mechanisms, such as altered
activity of specific enzyme systems (for exam-
ple, topoisomerase activity), altered apoptosis
regulation, or increased drug efflux in malig-
nant cells. Among these mechanisms, changes
in the drug efflux pump are the best known and
most extensively investigated. P-glycoprotein
(p-gp), a product of the MDR1 gene, is a 170-
kD transmembrane glycoprotein that functions
as an efflux pump to remove drug out of cells,
thus reducing the intracellular concentration of
the drug. The p-gp pump usually recognizes
substrate drugs and pumps them out of the cell
as they pass through the plasma membrane. To
date, several p-gp inhibitors have been investi-
gated as potential anticancer agents. In preclin-
ical studies, some of these p-gp inhibitors have
shown the restoration of cancer-cell sensitivity
to anticancer drugs. Unfortunately, when coad-
ministered with anticancer agents, these inhibitors
have generated considerable toxicity.110,111

Given the enormous capacity of cancer cells
to deploy various mechanisms to ensure their
survival in the face of treatment with anticancer
drugs, it is not surprising that promising strate-
gies to inhibit drug resistance have proven diffi-
cult to translate into clinical success. Strategies
for overcoming drug resistance should be based
on new drug delivery systems, which will allow
selective drug accumulation in tumor tissues,
tumor cells, or even compartments of tumor cells.
Nanoparticles are exemplars of such delivery sys-
tems, which aim to overcome both noncellular-
and cellular-based drug resistance and to increase

selectivity of drugs toward cancer cells while
reducing their toxicity toward normal tissues.

By choosing an appropriate nanoparticle poly-
mer carrier, it is possible to protect an antitumor
drug from the acidic microenvironment it encoun-
ters before penetration into tumor cells. It is also
expected that nanoparticles can bypass the p-gp
efflux pump, leading to greater intracellular accu-
mulation. For example, DOX-loaded poly (alkyl
cyanoacrylate) nanoparticles were able to pene-
trate cells without being recognized by p-gp
through forming an ion pair between degrada-
tion products and the drug.112 A clinical study
from Northfelt’s group has shown that liposomal
DOX is able to overcome drug resistance in AIDS-
related Kaposi’s sarcoma.113,114 Another way to
bypass the p-gp efflux pump is to deplete adeno-
sine triphosphate (ATP), which is necessary for
the ATP-dependent transporter to function prop-
erly. An ATPase inhibitor pluronic block copoly-
mer (P85) has been shown to enhance the
permeability of drugs through the BBB by inhibit-
ing the p-gp drug efflux system.115,116 This effect
was attributed to the combination of ATP deple-
tion and ATPase inhibition. A micellar formula-
tion of DOX using P85 has shown more effective
apoptosis in drug-resistant breast cancer cells.115,116

Ligand-targeted strategies, especially those using
receptor-targeting ligands, have also been applied
to overcome drug resistance since these ligands
are internalized via receptor-mediated endocy-
tosis, bypassing the plasma membrane where
p-gp primarily acts. As an example, folate recep-
tor-targeted, pH-sensitive polymeric micelles
containing DOX117 and transferrin-conjugated
paclitaxel nanoparticles exhibited greater cyto-
toxicity than the respective free drugs in a drug-
resistant model.118

MULTIFUNCTIONAL NANOPARTICLES
FOR TUMOR IMAGING

Tumor imaging plays a key role in clinical
oncology, with radiological examinations able to
detect solid tumors, determine recurrence, and
monitor therapeutic responses. Conventional
tumor imaging approaches such as CT and MRI
focus mainly on delineating morphological fea-
tures of the tumor, tissue, and organs, such as the
anatomic location, extent, and size of the tumor,
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at various levels of spatial resolution and contrast.
Despite continuous improvements in spatial res-
olution with advanced imaging equipment, imag-
ing modalities using nontargeted contrast agents
such as CT and MRI have limited sensitivity and
ability to provide specific and functional infor-
mation on the disease, which is increasingly rec-
ognized to be an obstacle to earlier diagnosis and
the monitoring of treatment responses.

Recent advances have stimulated the emer-
gence of the new field of “molecular imaging,”
which focuses on visualizing or imaging biolog-
ical events and processes in living systems, includ-
ing patients.9,119 Current molecular imaging
approaches, including PET, single-photon emis-
sion tomography, and optical imaging includ-
ing fluorescence-mediated tomography and
near-infrared fluorescence reflectance (NIRF)
imaging, have shown a high sensitivity in non-
invasive tumor imaging.4,5,7 A commonly used
PET imaging probe, 18F-labeled fluorodeoxyglu-
cose (FDG), can only localize tumors by iden-
tifying cells in the body that have increased
glucose uptake and metabolism, allowing for the
detection of those tumors. However, it is not
suitable for tumor types with a low glucose up-
take. It is well recognized that the development
of novel approaches for early cancer detection
and effective therapy will significantly contribute
to the improvement of patient survival. The
development of nanoparticles as imaging con-
trast agents also makes it possible for the pro-
duction of multifunctional nanoparticles with
the capacity of targeted tumor imaging and deliv-
ery of therapeutic agents. In comparison with
radioactive probes (ie, 18F-labeled FDG) used
for PET imaging, nanoparticles have both greater
surface areas and more functional groups that
can be linked with multiple diagnostic and ther-
apeutic agents.

One molecular imaging strategy to improve
the specificity of cancer detection is target-
specific imaging of biomarker molecules specif-
ically produced by cancer cells, coupled with
imaging probes guided by ligands that can rec-
ognize and interact with target molecules. Re-
cently, tumor-targeted optical, radioactive, or
magnetic probes have been generated and their
feasibility examined in animal tumor models and
in very limited clinical studies.120–124 However,

to develop this promising tumor imaging ap-
proach and eventually translate it to clinical appli-
cations, several important issues have to be
addressed, including (1) identification of a tar-
get molecule that is highly expressed in most
tumor cells, but is found at a low or undetectable
level in normal cells; (2) production of stable
and high-affinity targeting molecules in large
enough quantities for potential in vivo imaging
in animal models and eventual clinical use; (3)
development of imaging probes emitting a strong
enough signal to improve the sensitivity of can-
cer detection, but with a low toxicity to nor-
mal organs and tissues; and (4) increase in
retention time of the targeted imaging probes
in blood circulation, allowing for their accumu-
lation to sufficient levels in the tumor mass.

Advances in nanotechnology have shown the
promise of nanoparticles for tumor-targeted drug
delivery and noninvasive tumor imaging.79,121,125–127

With unique pharmacokinetics, nanoparticles
with sizes between 10 to 100 nm have a pro-
longed circulation time since they are usually not
taken up by the MPS within the liver or excreted
by the kidney, common limitations to the deliv-
ery of small molecular imaging agents or drugs.128

Such nanoparticles can navigate the vasculature
and cross barriers through small capillaries into
tumor cells. Extensive research has shown that
nanoparticles in the above size range accumulate
preferentially in tumor sites through the EPR
effect associated with tumor growth.79,128 More-
over, the optical and electronic properties and
biodistribution of many nanoparticles are often
dependent on size. Nanoparticles of specific sizes
can be synthesized under controlled conditions
to obtain the desired optical and magnetic prop-
erties and levels of therapeutic agents attached to
the particles.79,121 These properties offer the oppor-
tunity to design “smart” nanoparticles, including
target-specific contrast agents, multimodality
imaging probes, or even multifunctional reagents
for simultaneous imaging and treatment.

Quantum Dot Nanoparticles

Semiconductor quantum dots (QDs) are
nanometer-scale, light-emitting particles with
unique optical and electronic properties such
as size-tunable light emission, improved signal
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brightness, enhanced stability of the fluorescent
signal, and the ability to simultaneously excite mul-
tiple fluorescent colors.129 These properties are
most promising for improving the sensitivity of
molecular imaging and quantitative cellular analy-
sis by 1 to 2 orders of magnitude. Nie et al first
reported that it is feasible to simultaneously target
and image prostate tumors in living animal mod-
els using bioconjugated, prostate membrane
antigen-targeted QDs.79 This new class of QD
conjugate contains an amphiphilic triblock copoly-
mer layer for in vivo protection and multiple
PEG molecules for improved biocompatibility
and circulation, making it highly stable and able
to produce bright signals. Another advantage is
that QD probes emitting at different wavelengths
can be used together for imaging and tracking
multiple tumor markers simultaneously, poten-
tially increasing the specificity and sensitivity of
cancer detection.

Recently, QDs producing NIRF signals have
been developed.130,131 NIRF light penetrates
much more deeply into tissues compared with
visible fluorescence and allows for the detection
of signals inside animals, as compared with visi-
ble fluorescent signals, which can only pass through
several millimeters in the tissues (Figure 3). A
major advantage of NIRF QDs is that their emis-
sion is well beyond the spectral range of the flu-
orescence signal produced by blood and tissues
(autofluorescence), resulting in imaging with a
high signal-to-background ratio.119 Detection of
QD NIRF signals in sentinel lymph nodes within
large animals in real time has been demonstrated.130

Therefore, QDs are excellent optical imaging
nanoprobes for evaluating the specificity of tumor-
targeting ligands in vitro in tumor cells and in
vivo in animal tumor models. Sensitive real-time
detection of tissue distribution of targeted QDs
is also possible using the NIRF optical imaging
system after systemic delivery. However, since
cadmium is the main component of most QDs,
there is some concern over their potential toxi-
city, making the feasibility of using these QDs
for future clinical application still undetermined.

Magnetic Iron Oxide Nanoparticles

Superparamagnetic iron oxide (SPIO) or
iron oxide (IO) nanoparticles are becoming

increasingly attractive as the precursor for the
development of a target-specific MRI contrast
agent. IO nanoparticles have unique paramag-
netic properties, which generate significant sus-
ceptibility effects resulting in strong T2 and T*2
contrast, as well as T1 effects at very low concen-
trations.132–135 In addition to the previously
described unique properties and advantages of
nanomaterials, IO nanoparticles have a long
blood-retention time and are generally biodegrad-
able and considered to have low toxicity.136 Several
forms of IO nanoparticles have been used in
clinical settings and have proven to be safe for
human use.137,138 Some recent studies have
demonstrated that IO nanoparticles can be inter-
nalized by various cell lines, which allows for
magnetic labeling of the targeted cells.139,140

These features give IO nanoparticles great advan-
tages for in vivo tumor imaging and drug deliv-
ery compared with other types of nanoparticles.

In recent years, significant efforts have been
made to develop target-specific MRI contrast
agents based on the formulation of IO nanopar-
ticles. IO nanoparticles conjugated with ligands
targeting cell surface markers such as MUC1,
αvβ3 integrins, Her-2/Neu, or folate recep-
tor121,131,141–144 have been reported. However,
several obstacles remain to be overcome. One
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FIGURE 3 Optical Imaging of Peritoneal Tumor
Metastases Using Quantum Dots. Mouse mammary
tumor 4T1 cells stably transfected with a firefly luciferase
gene were incubated with Tat peptide-labeled quantum
dots (emission 650 nm) for 2 hours before injection into
mouse peritoneal cavity. Eight days later, biolumines-
cence imaging was performed on the mouse with a
Kodak in vivo FX imaging system, and tumor locations
(arrows) were determined. Optical imaging of peritoneal
cavity confirmed the tumor lesions (arrows).
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of the major challenges is to develop a surface
coating material that can not only stabilize the
nanoparticle, but also provide active functional
groups for controllable bioconjugation of “probe”
ligands. For the specific needs of imaging appli-
cations in vivo, IO nanoparticles with a small
size but high mass-magnetization value are desir-
able. For the specific purpose of cell targeting,
activation of the particle surface for easy conju-
gation with biomolecules is essential. Because
IO nanoparticles have low toxicity and a large
surface area for carrying drugs, several studies
have explored the feasibility of their use for the
delivery of anticancer drugs. Indeed, the feasi-
bility of simultaneous tumor MRI and drug
delivery using αvβ3 integrin-targeted multi-
functional polymeric micelles containing DOX
and a cluster of SPIO nanoparticles has been
demonstrated.145 In addition to chemotherapy
drugs, IO nanoparticles for in vivo delivery of
small interfering ribonucleic acids (siRNAs) have
been developed in animal tumor models. SiRNAs
can inhibit the expression of genes that are impor-
tant for resistance to drug treatment by specifi-
cally binding to the target message RNAs, leading
to their degradation. Such dual-purpose probes
are capable of delivery of survivin siRNA, which
targets an antiapoptotic protein that is upregu-
lated in cancer cells, for cancer therapy as well as
for simultaneous tumor imaging using MRI and
NIRF imaging.126

Recent efforts also focus on the development
of ultrasensitive magnetic nanoprobes for tumor
imaging. Using magnetism-engineered iron oxide
nanoprobes that are conjugated with HER-2 anti-
bodies, Lee et al showed an enhanced sensitivity
of MRI for the detection of HER-2 expressing
cancer in an animal model compared with that of
commonly used SPIO probes.121 This new gen-
eration of magnetic nanoparticles should provide us
with a powerful contrast agent for cancer detection.

IMPLICATIONS AND FUTURE DIRECTIONS

Cancer is known to develop via a multistep
carcinogenesis process and to progress using sev-
eral complex survival mechanisms, such as self-
sufficiency in growth signaling, insensitivity to
growth inhibitory signals, evasion of apoptosis,
limitless replicative potential, sustained angio-
genesis, and tumor invasion and metastasis.146 To
date, cancer treatments are performed on the
basis of clinical and pathologic staging that is
determined using morphologic diagnostic tools,
such as conventional radiological and histopatho-
logical examinations. However, even patients suf-
fering from cancers of the same cellular type and
clinical stage respond to the same conventional
treatment modalities differently and, ultimately,
with variations in survival rate. This implies that
cancer-associated events are unique in each patient.

Recent advances in molecular, biological, and
genetic diagnostic techniques have begun to
explore cancer-associated biomarkers and their
implication for the development and progres-
sion of cancer and to reveal that cancer is con-
trolled by complex multifactorial mechanisms
rather than a single factor.147 Molecularly tar-
geted therapy is a recent introduction acknowl-
edging our increased understanding of these
cancer behaviors at the molecular level. Success
of targeted therapies depends on expression of the
targeted molecules, which can also serve as can-
cer-specific biomarkers.148 Assays to accurately
and quickly quantify several cancer-related bio-
markers simultaneously on single tumor sections
or small tumor specimens will be enabled by
virtue of advances in nanotechnology.149,150 For
example, the use of conjugated QDs potentially
allows 5 cancer-related proteins to be detected
on the same tissue section.151
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FIGURE 4 Multifunctional Nanoparticle. The multifunc-
tional nanoparticle has the capability to simultaneously
carry therapeutic agents, targeting molecules such as
conjugated antibodies or other recognition agents, and
imaging signal contrast agents. The nanoparticle can be
used for specific delivery of anticancer agents, detection
of circulating cancer cells, and monitoring of treatment
effects in real time.
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In addition to ex vivo analysis for the detection
of early cancer and profiling of molecular bio-
markers, in vivo imaging of cancer using several
types of nanoparticles has also been investigated
together with the progression of nanoscale drug
delivery systems.79 The development of multi-
functional nanoparticles may contribute signifi-
cantly to the realization of individualized therapy
for cancer. Ideally, for constructing multifunc-
tional nanoparticles, an appropriate combination
of agents (therapeutic agent and targeting moi-
ety) will be chosen based on accurate biologi-
cal information within the tumor (molecular
biomarker profiling of the patient) with imag-
ing material attached on the nanoparticle sur-
face (Figure 4). Nanoparticles may eventually
be capable of detecting malignant cells (active-
targeting moiety), pinpointing and visualizing
their location in the body (real-time in vivo imag-
ing), killing the cancer cells with minimal side
effects by sparing normal cells (active targeting
and controlled drug-releasing system), and report-
ing back that their payload has accomplished its
mission (monitoring treatment effects in real time).

Several kinds of nanoparticles have been eval-
uated to identify their potential as multifunctional
nanoparticles that can be applied for simultaneous
in vivo imaging and treatment of cancers. For
example, 131I-labeled fluorescein isothiocyanate-
conjugated glycol chitosan nanoparticles loaded
with DOX exhibited selective localization in
tumor tissues, resulting in clear delineation of
tumor tissue against adjacent normal tissues by
radionuclide imaging.152 This particle was sug-
gested to be used as a potential carrier to direct the
drug to tumor tissues.152 A type of magnetic
nanocrystals, which consisted of FeCo in the core
and surrounding graphitic shell, displayed long-
circulating positive contrast enhancement by MRI
in an in vivo animal model. It also significantly
increased temperature under near-infrared
laser radiation, suggesting a potential application
in simultaneous imaging and photo-thermal abla-
tion therapy.153 A recent study of a targeted mul-
tifunctional nanoparticle for imaging and

photodynamic therapy showed a significantly
improved therapeutic efficacy when compared
with a nontargeted nanoparticle in an animal
model. Since this nanoparticle formulation con-
sisted of an encapsulated imaging agent and pho-
tosensitizer, treatment effects can be reported in
real time by using MRI imaging.154,155

With this promising progress in the develop-
ment of nanotherapeutic and imaging approaches
to cancer detection and treatment, it is imper-
ative to have a better understanding of the basic
principles involved in designing and applying
nanoparticles for diagnosis, treatment, or the
combination of imaging and therapeutics in dif-
ferent clinical situations. There are certain crit-
ical questions that need to be addressed in the
rational design and application of nanoparticles
before further clinical development, such as how
the association or conjugation of a therapeutic
agent to ligand or carrier changes the pharma-
kinetics, biodistribution, and side effects of the
nanotherapeutic drugs; how the safety profile of
nanoparticles changed after conjugation, such
as coating with QDs; how we can minimize the
potential toxicity of polymeric nanoparticles that
is inherent from the accumulation of a non-
biodegradable polymer with a size over the renal
threshold31; and how side effects resulting from
the ability of nanoparticles to cross the BBB can
be prevented or diminished. These questions are
critically important and hitherto understudied.
The answers will certainly lead to more rational
design of optimized nanoparticles with improved
selectivity, efficacy, and safety. Attracted by the
rapid and promising progress in nanotechnol-
ogy, physicists, chemists, engineers, biologists,
and clinicians will continue to challenge them-
selves to develop novel and efficacious nanosys-
tems for the diagnosis and treatment of cancer.
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