Photodynamic effect on cancer cells influenced by electromagnetic fields

Lijun Panga, Cristina Baciub, Nelly Traitchevac, Hermann Bergd,*

aInstitute of Physics, Nankai University, Nankai, PR China
bPhysics Department, University of Ploiesti, Ploiesti, Romania
cInstitute of Plant Physiology ‘M. Popov’, Bulgarian Academy of Sciences, Sofia, Bulgaria
dLaboratory Bioelectrochemistry, Jena, Saxonian Academy of Sciences, Leipzig, Germany

Received 4 May 2001; accepted 7 August 2001

Abstract

The synergism of low-frequency electromagnetic field treatment and photodynamic effect on killing of human cancer cells is presented. The weak pulsating electromagnetic field (PEMF) generated by Helmholtz coils in the mT range influences the permeability of cell membranes for photosensitizers. Several types of sensitizers were excited by visible light during incorporation without and with two kinds of PEMF treatment. In the first part suitable photosensitizers were selected in the absorption range between 400 and 700 nm against human myeloid leukaemia K562 and human histiocytic lymphoma U937 cells by treatment of PEMF consisting of rectangular pulse groups. In the second part amplitude and frequency dependencies were measured using sinuous PEMF and white light with the result that after 12 min the PEMF treatment enhanced photodynamic effectivity by more than 40% over the control value. Taking into account the influence of many parameters, an additional optimization will be possible by photodynamic PEMF synergism for an increased drug delivery in general. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Cancer cells; Photodynamic effect; Electromagnetic field; Synergism

1. Introduction

Stimulation or inhibition of cellular processes by electromagnetic fields are of considerable interest in cell biology and biotechnology, not only with respect to basic mechanisms, but also for its practical applications. Different processes including proliferation, enzyme reaction, biopolymer synthesis and membrane transport have been investigated with respect to their alteration by weak pulsing electromagnetic fields (PEMF) [1–3]. In contrast, high single electric pulses cause electroporation of membranes for fast incorporation of drugs [4–6], however, the viability of cancer cells and tissues decreases.

Cytotoxicity of photodynamic effects, especially against tumor cells, has been evaluated since the 1960s. According to historical development [7] the first generation of photosensitizers show absorption maximum mostly below 600 nm, e.g., simple porphyrins, rose bengal, anthrachinin-2-sulfonic acid, acridine orange, thiopyronine [8–12], not only for basic research but also for therapy of cancer, psoriasis, etc. [13–17]. Later effective dyes of higher molecular weight with absorption maximum beyond 600 nm have been used, e.g., porphyrin derivatives [18], Zn–phthalocyanine [19–22], its derivatives, and many other cyclic structures such as naphthocyanines [17], classified as ‘second generation’.

In order to find out the possibility of synergism between electric pulses and light for improving photodynamic effects by facilitating the uptake of photosensitizers, we combined at first the electroporation with photodynamic effects on yeast [23] and cancer cells. In Fig. 1 [24] is shown the usual photodynamic effect and in comparison to it the action, but after a single electric pulse.

Mechanisms of light excitation have been analysed since the pioneering work of Jori and Spikes [7,15]. There are two main photochemical pathways:

Type I: photo-oxidation of cell components by excited sensitizers being reduced.

Type II: singlet oxygen — produced by energy transfer to O\textsubscript{2} — oxidizes also cell compounds.

Whereas type II mechanism destroys many compounds out and inside the cell, the type I mechanism needs penetration of the sensitizer through the cell envelope for complex formation with nucleic acids or proteins before local oxidation [9,10]. Recently, we tried a second possi-
577.92, abs. max. 673 nm), copper(II)phthalocyanine-sulfonate (Cu–pc, Merck, Mw 984.24, abs. max. 610 nm), Cibacronblue-3G-A-dextran (CB, Pharmacia, Uppsala, Sweden, Mw 3300, dye itself Mw 773, abs. max. 610 nm), daunomycin–HCl (DA, Serva, Heidelberg, Germany, Mw 564.0, abs. max. 481 nm), actinomycin-C (ACM, Zimet, Jena, Germany, Mw 1300, abs. max. 440 nm).

Trypan blue (TB, Sigma, St. Louis, USA, Mw 960.8, abs. max. 592 nm) was used for determination of the viability of cells.

2.2. Cells

The human chronic myeloid, leukemic K-562 cells [31] were from Fujisachi Cell Center (Japan). The culture medium was 90% RPMI (Gibco) with 10% CO₂, 37°C, cultivated in the FG Molecular Cytology (IMB, Jena).

The human histiocytic lymphoma U937 cells with mononuclear phagocytic characteristics were from the American Cell Culture Collection, and cultivated by the Institute of Virology (FSU, Jena), in RPMI 1640 medium supplemented with 10% fetal calf serum (Gibco Life Science, USA), 100 µg ml⁻¹ streptomycin and 100 U ml⁻¹ penicillin (Sigma, USA) at 37°C in a 5% CO₂ incubator of 90% humidity.

2.3. Design of electromagnetic fields

2.3.1. Rectangular pulse bursts (RPB)

The exposure system to produce PEMF of rectangular shape (RPB) consisted of Helmholtz coils (mean diameter: 9 cm; hollow cores: 5 cm; copper wire: 1.2 mm diameter; 0.3 Ohm resistance) connected on a Bi-Osteogen System 204 (Electrobiology Inc., Fairfield, NJ, USA). This PEMF condition produced 5.5 ms bursts of 25 single 220 µs pulses with 60 ms intervals in between (used originally for enhanced Ca transport for bone healing [32]). The mean magnetic flux density B in the center area of the coils was approximately 15 mT for the plus tip and 2 mT for the minus tip.

Cell suspension in the presence of sensitizer were exposed to PEMF for 6, 12 or 24 min simultaneously with visible light irradiation: 19.8, 39.6 and 79.2 J cm⁻², respectively.

2.3.2. Sine waves (SW)

Mostly f=50 Hz and B=0–15 mT, generated either by a transformer (Conrad Electronics, Hirschau) or a frequency generator (Tesla Oscillator B492) combined with the Amplifier PA940 (Conrad Electronics, Hirschau) and different Helmholtz coils with resistances up to 22 Ohm, were used.
2.4. Light irradiation

2.4.1. Tungsten–halogen lamp irradiation

Irradiation of the 100 μl cell suspension plus 10–40 μl dye stock solution was arranged in two ways (A and B).

2.4.1.1. Simultaneous irradiation

The experimental (E) and the control (C) Acryl cuvettes (REF, Sarstedt, Germany) were positioned on an ‘optical bench’ (Carl Zeiss) at both sides of the tungsten halogen lamp (24 V and 150 W, Osram 64465) behind two identical concave glass lenses. Furthermore, for heat absorption two glass chambers containing a 7 cm water layer were positioned between the lamp and the lenses. By this means two nearly identical light beams of an area 4×3 mm could be obtained for E and C. The white light beams had about 55 mW/cm² irradiance measured by a thermopile from Laser 2000 (SL-Microtest GmbH, Jena).

2.4.1.2. Alternate irradiation (sham condition)

Only the beam of one side of the lamp (Section 2.4.1) – directed into the Helmholtz coil – was used for irradiation of E and C cuvettes in turn.

2.4.2. Laser

Laser of 650 nm of 1 mW (Conrad Electronics, Hirschau) and 670 nm of 3 mW (Laser Components) produce irradiance of 8 mW/cm² and 25 mW/cm², respectively, however, the irradiated area on the cuvette is only 12 mm².

2.5. Measurements and calculation

After mixing cell suspension (100 μl) with the sensitizer (10–40 μl) light irradiation started simultaneously with the PEMF experiments. Experiments (with PEMF) and controls (without PEMF) were carried out on cells washed once in 0.3 M mannitol solution after centrifugation for 8 min (rotation centrifuge factor (RCF)=172 g).

The viability of the cells was tested by TB (0.4% stock solution) dyeing for 5 min, otherwise an ‘after-effect’ caused by more dead cells was found. The ratio of nonviable/viable cells was ascertained by an inverted light microscope (Olympus, Tokyo, Japan) equipped with a CCD–IRIS video camera (Sony, Tokyo, Japan). About 100–150 cells were counted from the E and C cuvettes. The nonviable cells of C by photodynamic action were between 15 to 25%. Three to seven independent experiments have been performed.

The effectivity (Ei) of this synergistic treatment was determined according to:

\[E_i = \left(\frac{N_0}{N_C} - 1 \right) \times 100\% \]

where \(N_0 \) is the percentage of dead cells in the experiment and \(N_C \) is the percentage of dead cells in the control. The amount of dead cells \(N_0 < 10\% \) in the culture medium was subtracted before \(E_i \) determination.

3. Results

3.1. Selection of photosensitizers

Before the combined experiments started the viability of cells have been checked by 5 min TB treatment:

- U cells in the presence of 0.2% TB are stable for 1 h.
- U cell illumination only did not change the percentage of dead cells from the beginning.
- K cells show no more dead cells after 1 h exposure by RPB field.

3.1.1. Thiopyronine (TP; first generation; Type I action)

On U cells: The final concentration of TP was 1.8×10⁻³ M and the exposure 6 min. One result given in Table 1 demonstrates synergistic kinetics until \(E_i = +40.5\% \).

On K cells: They are more stable than U-cells: 1.8×10⁻³ M and the 20 min exposure reaches \(E_i = +34.2\% \). Table 1 shows: 4.6×10⁻⁵ M, but only 12 min exposure yielding \(E_i = +28.6\% \).

3.1.2. Protoporphyrin IX (PP; second generation; Type II action)

On U cells: [PP] 0.9×10⁻⁵ M, 12 min exposure: \(E_i = +20.2\% \) (Table 1).

On K cells: [PP] 0.45×10⁻⁵ M, 6 min (Table 1).

3.1.3. Zn–phthalocyanin (Zn–pc; second generation; Type II action)

On U cells: [Zn–pc]=1.5×10⁻³ M, exposure 6 min. The result is given in Table 1, demonstrating the relatively strongest effect \(E_i = +42.4\% \). Contrary to this result Cu–pc shows unexpectedly a much lower activity.

3.1.4. Daunomycin (DA; cytotstatic drug; Type I action)

On U cells: [DA] 0.45×10⁻⁵ M and 12 min treatment (Table 1).

<table>
<thead>
<tr>
<th>Photosensitizer/Cell</th>
<th>C (%)</th>
<th>E (%)</th>
<th>(E_i) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP/U</td>
<td>29.0±3.4</td>
<td>40.8±5.7</td>
<td>40.5±5.7</td>
</tr>
<tr>
<td>PP/U</td>
<td>32.3±4.1</td>
<td>38.6±3.6</td>
<td>20.2±6.2</td>
</tr>
<tr>
<td>DAU/U</td>
<td>34.5±4.6</td>
<td>42.9±4.1</td>
<td>25.2±11.3</td>
</tr>
<tr>
<td>Zn–pc/U</td>
<td>29.8±3.5</td>
<td>42.0±3.3</td>
<td>42.4±23.2</td>
</tr>
<tr>
<td>TP/K</td>
<td>34.9±3.2</td>
<td>44.9±4.7</td>
<td>28.6±6.6</td>
</tr>
<tr>
<td>PP/K</td>
<td>31.2±3.3</td>
<td>37.8±2.7</td>
<td>21.5±5.7</td>
</tr>
</tbody>
</table>

For concentrations and times, see text.
Table 2
Frequency dependence of E_i (white light, 39.6 J/cm2) for Zn–pc with U cells and for ACM with K cells shows a maximum at 50 Hz.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>B (mT)</th>
<th>E_i (%)</th>
<th>E_i (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8.5</td>
<td>8.9</td>
<td>ACM</td>
</tr>
<tr>
<td>20</td>
<td>8.5</td>
<td>22.4</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>8.5</td>
<td>41.3</td>
<td>47</td>
</tr>
<tr>
<td>60</td>
<td>8.5</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>8.5</td>
<td>18.9</td>
<td>21</td>
</tr>
</tbody>
</table>

3.1.5. Actinomycin (ACM, cytostatic drug; Type I action)
In spite of its higher molecular weight than DA it shows the same order of activity (compare Table 2).

3.1.6. High-molecular weight compound
The high-molecular dye, CB, an anthraquinone derivate bound to the dextran chain, has been tested as a sensitizer with the result that its photodynamic activity is smaller than that of all other sensitizers because the pulsating electromagnetic field (PEMF) was not strong enough to increase its permeation.

3.2. Amplitude dependence at 50 Hz

The following PEMF experiments were performed at 50 Hz (Fig. 2), by a sine-wave generator.

3.2.1. Zn–pc and U cells: (in mannitol 0.3 M)

$[\text{Zn–pc}] = 1.4 \times 10^{-5}$ M. After 12 min exposure, the ratio of nonviable/viable cells was ascertained again by the trypan blue test. The amplitude of PEMF were fix at: $B=0.7, 5, 6.5, 8.5, 10, 11.8, 13.2$ and 15 mT, respectively (Fig. 2).

The results in Fig. 2 show a main ‘electromagnetic window’ resulting in $E_i = +40 \pm 16\%$ at 8.5 mT in comparison with lower and higher amplitudes.

3.2.2. PP and U cells

The suspension of cells in mannitol (0.3 M) contains 0.9×10^{-3} M PP. The parameters of PEMF were set at: $B=0.7, 6.5, 8.5, 10, 11.8, 13.2, 15$ mT. After 12 min exposure and TB test, the results are also shown also in Fig. 2. One similar ‘electromagnetic window’ of $E_i = +31\%$ appeared around 8.5 mT at the same position as for the Zn–pc peak independently of the quite different light absorption curves of both sensitizers.

3.3. Frequency dependence (Table 2)

In the low frequency range there is again a maximum for 8.5 mT at 50 Hz, which decreases to 60 Hz shown in Table 2 for the Zn–pc action on U-cells. Further measurements in the direction of higher frequencies are in progress to ascertain if only one or more ‘electromagnetic window’ occurs.

3.4. Dependence on irradiation time

Suspensions of U-cells with Zn–pc were exposed to PEMF of amplitudes 1.5 mT or 8.5 mT for 6, 12, and 24 min light irradiation. Ascertained by TB test an exponential enlargement of numbers of dead cells was found.

3.5. Dependence on coherent light

For some sensitizers it can be more suitable to irradiate by Lasers [33]. Therefore the effect of our 670 nm Laser has been tested (20 min ≈ 30 J/cm2) preliminarily on K cells for a first comparison (Table 3).

Of course nowadays a broad range of light sources and light conductors is available in order arrange optimal conditions for therapy.

Table 3
Comparison of effectivity of Laser (670 nm) and the white light lamp

<table>
<thead>
<tr>
<th></th>
<th>Laser (%)</th>
<th>White light (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{MB}]$</td>
<td>4.7 $\times 10^{-3}$ M</td>
<td>40.0</td>
</tr>
<tr>
<td>$[\text{Zn–pc}]$</td>
<td>1.6 $\times 10^{-5}$ M</td>
<td>45.5</td>
</tr>
<tr>
<td>$[\text{PP}]$</td>
<td>0.9 $\times 10^{-7}$ M</td>
<td>40.0</td>
</tr>
</tbody>
</table>
4. Discussion

Our results for improvement of photodynamic action by easier penetration of external photosensitizers through disturbed membranes by PEMIC can be summarized as follows:

(a) As shown in the literature [1–3] each kind of cell seems to respond in the frame of a specific ‘electromagnetic window’ depending on frequency, amplitude and wave form. However, not only the membrane channels will be affected, but also certain metabolic processes, e.g., the increase of DNA crosslinking by malondialdehydes may occur according to [41].

(b) Some photosensitizers of the first and second generation and white light irradiation have been chosen for testing this principle of synergism. The PEMF treatment yields higher effectiveness, the lower the control values are. That means for practical purposes this method can be useful if the photosensitizer or in general a drug does not penetrate sufficiently to reach its maximal impact [34,35] (e.g., the cytostatic bleomycin needs electroporation for higher efficacy [4]). Higher E_f values may be possible for the combination of stronger Laser and long wavelength PEMF equipment for membrane destabilization in the depth of cancer tissue.

(c) A further possibility is to utilize a cytostatic drug as a sensitizer [34,35]. In the case of anthracyclines (e.g., DA and ACM), the photo-oxidation is combined with nuclease hindrance by their intercalation into the DNA double helix.

(d) Besides possibilities of high direct currents between electrodes or extremely high magnetic flux densities $B > 1T$ [39] for destroying malignant cells, the photodynamic efficacy can be increased by:

(i) single strong electroporative pulses via inert electrodes [23,24] (Fig. 1),
(ii) capacitatively coupled alternating currents via inert electrodes [36,37],
(iii) PEMF for drug transport stimulation, e.g., by conformational coupling [38] of channel proteins, carrying electric or magnetic moments [29].

So far as a comparison is possible, the highest delivery (uptake of sensitziers) is caused by electric pulse treatments (i), whereas (ii) and (iii) don’t reach the same efficacy up to now. However, method (iii) induces apoptosis besides necrosis in a noninvasive manner. The easier penetration of propidium iodide — a weaker sensitizer — was demonstrated by flow cytometry after 10 mT treatment [40].

5. Conclusions

A systematic research of this synergism between PEMF and light is still in its beginning. Nevertheless, it can be concluded that some promising strategies should be tested in future.

- Preference of water soluble photosensitizers absorbing > 600 nm because the long wavelength Laser techniques can irradiate deeper cancer tissues without using light conductors.
- Combination of photo-oxidation by dye complexes inside the cell (type I) and also membrane destruction by singlet oxygen (type II) may be possible by a mixture of two sensitzizers, e.g., methylene blue and protoporphyrin IX.
- Application of higher PEMF frequencies because the impedance of tissues is lower in the MHz range and therefore deeper cancer tissues can be treated.
- This synergism of PEMF and white light or stronger Laser irradiation offers the chance to develop a noninvasive, improved treatment of a localized tumor [15] as well as of psoriasis [16] — spreading out over the skin — by such photosensitzizers enriched preferentially in cancer cells.

Acknowledgements

Lijun Pang, Cristina Baciu and Nelly Traitcheva are grateful to the Gesellschaft für Biologische Krebsbekämpfung (Heidelberg) for a grant to work in the Lab. Bioelectrochemistry at Campus Beutenberg, Jena. For cell cultivation we like also to thank Mrs G. Gothe (IMB, Jena) and Mrs V. Güntzschel (Instit. Virology, FSU, Jena).

References

[10] H. Berg, H.E. Jacob, Biologische Wirkungen photochemischer Wasserstoffperoxidbildung. 2. Mitt. Intensivierung der photo-
dynamischen Wirkung von Anthrachinon-2-sulfonsäure in Gegen-
wart von Glycerin und anderen Wasserstoffdonatoren, Photochem.

Reparatur-Inhibition photodynamisch induzierter DNA-Schäden in
Proteus mirabilis durch das Anthracyclin–Antibioticum Violamycin

of animal tumors with the photosensitizer methylene blue using a

[14] V. Mantareva, M. Shopova, G. Spassova, D. Wöhrle, S. Muller, G. Jori,
F. Ricchelli, Si (IV)-methoxyethylene-glycol-naphthalocyanine: synthesis and pharmacokinetic and photosensitizing prop-
erties in different tumour models, Photochem. Photobiol. 40 (1997)
258–262.

[15] G. Jori, C. Perria (Eds.), Photodynamic Therapy of Tumors and

N. Sönijnchsen, Photodynamic hematoporphyrin therapy of psoriasis,
in: G. Jori, C. Perria (Eds.), Photodynamic Therapy of Tumor and
Other Diseases, Libreria Progetto Editore, Padova, 1993, pp. 338–
343.

[18] T. Mang, T. Dougherty, W. Potter, D. Boyle, S. Sommes, J. Moan,
Photobleaching of porphyrins used in photodynamic therapy and

[19] K. Oda, S. Ogura, I. Okura, Preparation of a water-soluble fluoroi-
nated zinc phthalocyanine and its effect for photodynamic therapy,

Sirov, G. Jori, F. Ricchelli, Comparative pharmaco-kinetics and
photodynamic studies with Zn(II)-phthalocyanine in hamsters bear-
ing an induced or transplanted rhabdomiosarcoma, Photochem.
Photobiol. 16 (1992) 83–89.

[21] M. Obochi, R. Boyle, J. Van Lier, Biological activities of phthalal-
cyanines. XIII. The effects of human serum components on the
in vitro uptake and photodynamic activity of Zinc–phthalocyanine,

phthalocyanine; mechanisms for cellular uptake and photosensita-

[23] X. Wang, I. Hönes, H. Berg, Uptake of photodynamic sensitizer by
175–177.

[24] H. Berg, M. Lambreva, Synergism of photodynamic and electro-
permeation effects on cell vitality as a novel cytomotoxic agent.
increases photodynamic effects, J. Electroanal. Chem. 486 (2000)
220–224.

fermentation by pulsatile electromagnetically induced currents,

[26] R.A. Luben, Effects of low energy electromagnetic fields (pulsed
and DC) on membrane signal transduction processes in biological

[27] B. Kula, M. Drozdz, A study on magnetic field effects on fibroblast
cultures. Part 2. The evaluation of the effect of static and extremely
low frequency (ELF) magnetic fields on free-radical processes in

[28] C. Baciu, S. Gothe, H. Berg, Electromagnetic permeabilisation of
yeast cell membranes yielding enhanced photodynamic action — A

[29] J. Kanofsky, P. Sima, Preferential cytotoxicity for multidrug-resis-
tant K562 cells using the combination of a photosensitizer and a

Kawamura, Y. Imai, T. Ohira, Electromagnetic field effects on
free-radical processes in biosystems, Bioelectrochem. Bioenerg. 25 (1991) 455±
462.