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Abstract

Photodynamic therapy (PDT) has been investigated extensively in the laboratory for decades, and for over 25 years in the clinical
environment, establishing it as a useful adjuvant to standard treatments for many cancers. A combination of both photochemical
and photobiological processes occur that lead to the eventual selective destruction of the tumour cells. It is a potentially valuable
adjuvant therapy that can be used in conjunction with other conventional therapies for the treatment of cerebral glioma. PDT has under-
gone extensive laboratory studies and clinical trials with a variety of photosensitizers (PS) and tumour models of cerebral glioma. Many
environmental and genetically based factors influence the outcome of the PDT response. The biological basis of PDT is discussed with
reference to laboratory and preclinical studies.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Photodynamic therapy (PDT) is a binary treatment
modality that involves the selective uptake of a photosensi-
tizer (PS) by tumour cells followed by irradiation of the tu-
mour with light of the appropriate wavelength to excite and
activate the PS, resulting in selective tumour destruction.

The efficiency of PDT is dependent on the interaction of
the PS and the activating light to cause selective damage to
the tumour tissue being treated.

The wavelength range of the activating laser light is nor-
mally between 600–900 nm with many of the early clinical
studies utilizing the 630 nm wavelength of the first genera-
tion porphyrin-based PS. The effective penetration depth of
the treatment is dependent on the wavelength of light used
to activate the PS in question. The longer the wavelength,
the deeper the penetration depth of the laser light but the
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optical properties of the tissue to be treated will have an
impact on the fluence (light dose) administered within a
given time. Absorption and scattering of the light in the tis-
sue will determine the depth of treatment along with the
concentration of the PS in the tissue and surrounding
stroma.

An additional critical component in this relationship is
the availability of oxygen which is important in the produc-
tion of a short-lived excited singlet state of oxygen, which is
generated as a result of the PDT process. This form of oxy-
gen is highly cytotoxic with a short radius of action and
lifetime, and therefore produces a localized effect on the tu-
mour cells. The relationships of the many components of
the PDT process are complex and alterations to any of
these factors can influence the biological response.

2. History of PDT

Photosensitizing drugs in conjunction with light have
been used in a variety of medically based procedures such
as rickets, psoriasis, vitiligo and skin cancer in Indian,
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Greek, Chinese and Egyptian cultures for thousands of
years.1 In 1903, Jesionek and von Tappeiner utilised the
phototherapeutic properties of eosin to treat lupus of the
skin and skin cancers2 and in 1904 von Tappeiner and
Jodlbauer discovered that oxygen was essential for the pho-
tosensitization process and named this process photody-
namic therapy.3 In the 1920s, the French physician
Policard noted that tumour tissue was inherently more
fluorescent when animal tumours were exposed to a Woods
lamp, indicating a selective localization of endogenous por-
phyrins to tumour tissue.4 This led to studies by Figge
et al.5,6 and Rasmussen-Taxdal et al.7 in the 1940s and
1950s, who attempted to accurately detect tumour tissue
by fluorescence in patients and tumour-bearing animals
after the administration of natural porphyrins. In 1961,
Lipson and Schwartz reported that haematoporphyrin
derivative (HpD) could be used to detect tumours and de-
stroy tumour tissue8,9 and in 1966, HpD was first used to
treat a patient with a recurrent breast cancer.10 Experimen-
tal studies in the 1970s showed that singlet oxygen was the
cytotoxic product of the photodynamic process,11 which
motivated Dougherty to utilize HpD because of its high
singlet oxygen quantum yield and absorption maxima in
the red region of the light spectrum and he subsequently
treated 25 patients for a variety of systemic tumours.12 Per-
ria et al.13 were the first to utilize PDT as a treatment for
human glioma and during the 1980s a number of neurosur-
geons began treating glioma patients with PDT.14–19

3. Photosensitizers

PDT is reliant on the concept of selective localization of
the PS to the tumour that can subsequently be activated by
the absorption of light of the appropriate wavelength un-
ique to the absorption spectral fingerprint of the com-
pound, which then leads to the generation of active
Fig. 1. The synthesis of HpD
species such as singlet oxygen and free radicals that are
toxic to the cells in which they are produced. The targeting
of the PS is achieved by the increased uptake in neoplastic
tissue, making the treatment somewhat selective. HpD,
which is a first generation PS, has been almost solely used
for clinical studies in the treatment of glioma. It is a com-
plex mixture of porphyrins whose chemical structure is
based on the tetrapyrrole ring. The composition of this
compound varies depending on the method of synthesis
and storage.20–22 Lipson et al.23 first described the synthesis
of HpD utilizing the reaction of acetic and sulfuric acids on
haematoporphyrin which was then subsequently neutra-
lised with sodium hydroxide to produce HpD (Fig. 1). Kes-
sel et al.24 used an alternative method beginning with
purified haematoporphyrin diacetate that resulted in a
greater proportion of oligomeric porphyrins in the final
product.25 HpD has an optimum absorption at around
400 nm but this wavelength penetrates tissue very poorly
and therefore a weaker Q-band in the 628–632 nm region
is used clinically for excitation in the PDT process, which
has been shown to have a better penetration depth.26,27

Many endogenous molecules, such as haemoglobin,
strongly absorb light at wavelengths below 600 nm that
would attenuate most of the incoming photons, reducing
the amount of activating light penetrating the target neo-
plastic tissue, hence the use of absorption peaks above
600 nm.28

Many of the first generation of PS such as haem-
atoporphyrin and its derivatives were based on the porphy-
rin ring platform and after a variety of chemical
modifications and purifications, many different porphyrin
products have been used clinically. These include HpD,
Photofrin�, Photosan and Photocan29 which vary in their
composition of porphyrin monomers, dimers and oligo-
mers30 and subsequently their PDT efficacy. Investigations
into alternative compounds have continued since the devel-
from Haematoporphyrin.
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opment of these early PS in the 1970s and 1980s in order to
improve both the selectivity of the PS and increase the PDT
response. Important characteristics of an ideal PS are that
it possess peak activation at 650–900 nm (increased tissue
penetration but below the 900 nm threshold where the pro-
duction of activated singlet oxygen is markedly reduced), is
a single component compound, is systemically non-toxic
and is water-soluble. It should have increased tumour tis-
sue selectivity, reduced skin phototoxicity through rapid
systemic excretion, and importantly for gliomas, be able
to cross an intact blood-brain barrier to reach infiltrating
tumour cells without entering surrounding normal brain
cells.

Many compounds have been synthesized and investi-
gated as potential new generation PS for a variety of differ-
ent conditions and cancers. Only a few make it through to
clinical trial. These include but are not limited to Vertepor-
fin (benzoporphyrin derivative), Purlytin (tin etiopurpirin),
Foscan (meta-tetrahydroxyphenyl chlorin), NPe6 (mono-
aspartyl chlorine e6), Levulan (D-5-aminolevulinic acid),
Lutex (lutetium texaphyrin), BOPP (tetrakis-carborane
carboxylate ester of 2.4 [a,b-dihydroxyethyl] deuteropor-
phyrin IX, abbreviated to a boronated porphyrin), Photo-
sens (phthalocyanine) and LS11 (taloporphyrin).31–47

4. Photochemistry of photosensitizers

As indicated earlier, the most important cytotoxic prod-
uct of the PDT photochemical reaction is singlet oxygen
and the effectiveness of the PS has been shown to be di-
rectly proportionate to the amount of singlet oxygen pro-
duced.48 Once the PS is illuminated with the appropriate
wavelength of light corresponding to an absorbance max-
ima, the PS is converted from its stable electronic ground
state to an excited singlet state (during this excitation, other
processes such as scattering and reflection can also occur).
The excited PS will attempt to de-excite as there are no un-
Fig. 2. A simplified energy level diagram showing the phot
paired electrons in the outer valance shell of the PS and
return to its ground state by a number of different modes.
This can include relaxation back to the ground state via the
emission of a fluorescent photon (short-lived) or a phos-
phorescent photon (longer-lived) if the initial de-excitation
has occurred via excited triplet states in an intersystem
crossover (Fig. 2). The relaxation from the intermediate
intersystem crossover states may also initiate a sequence
of photochemical responses known as Type I or Type II
reactions. In oxygenated environments, the PS will readily
transfer its energy down to ground state molecular oxygen
(3O2) which results in the production of singlet oxygen
(1O2). Only a small amount of energy is required for the
transition of oxygen from the triplet to singlet state and
this is known as a Type II reaction, because of the
dependence of the reaction on the oxygen concentration.49

Alternatively, Type I reactions are characterized by a
dependence on the PS : cellular substrate ratio. In this reac-
tion, the triplet state PS can react directly with the cellular
substrate via electron transfer that produces an oxidized
substrate and a reduced PS. In less oxygenated or hypoxic
environments, the reduced PS can then also react with
superoxide radicals, producing superoxide ions and ulti-
mately leading to the creation of highly reactive hydroxyl
radicals. Even though it is believed that the Type II reac-
tions dictate the outcome of a PDT reaction, in a hypoxic
environment or where the PS is localized in high concentra-
tions with the cellular substrate, Type I reactions may play
a more predominant role.

5. Singlet oxygen

The extreme reactivity of singlet oxygen arises from the
pairing of two electrons that have misaligned spins in one
of the outermost antibonding orbitals. This is a result of
the interaction of one of the electrons reacting with the ex-
cited PS, causing its spin to invert, pair up with another
oactivation of a photosensitizer from the ground state.



Fig. 3. Lipoprotein isolation from patient serum (62). Total protein
isolation in panels (a) and (b). (a) A photo taken under normal white light
conditions, whereas (b) was taken under a UV light source. The brown
layer in (a) and the pink layer in (b) are the total lipoproteins (VLDL, very
low density lipoproteins, LDL, low density lipoproteins and HDL, high
density lipoproteins). Gradient separation of lipoprotein classes in panels
(c) and (d). (c) A photo taken under normal white light conditions,
whereas (d) was taken under a UV light source. The cloudy top layer is
comprised of chylomicrons and VLDL’s, the middle layer LDL’s and the
HDL’s are located directly above the bottom yellow layer (dense serum
proteins, in (c) and are fluorescing in (d)62).
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electron in this orbital and subsequently destabilize the
molecule.

The highly toxic singlet oxygen exhibits short lifetimes
in organic solvents (10–100 lsec) and even shorter in bio-
logical systems (40 nsec)50–56 because of its highly reactive
nature. This property of singlet oxygen means that the
PDT-induced damage caused by its formation is highly
localized within a short radius of action of less than
0.02 lm50 and therefore confined to the cell in which it is
produced. The initial damage is probably confined to tar-
gets near or within the localization of the PS, which in
many cases can be hydrophobic regions of the cell due to
the hydrophobic character of most PS, followed by the
triggering of an apoptotic or necrotic response, depending
on the organelle targeted by the PS localization.50,57–59

6. Photosensitizer transport

From a practical point of view, the main characteristics
that are initially targetted when designing a new PS in a
laboratory are a clinically relevant absorption peak (be-
tween 600–900 nm) and the ability to generate active
molecular species such as singlet oxygen at a reasonable le-
vel. Further in vivo screening then determines those that
are somewhat selectively localized within neoplastic cells
or tissue. The structure of a PS will determine how it will
interact in its surroundings, whether it is an in vitro or
in vivo system. The hydrophobicity and charge on a PS will
influence how it relates to itself in solution in vitro, that is,
whether the PS will stay in a monomeric or aggregated
form. In vivo is a completely different matter, as the PS
structure, hydrophobicity and charge, will determine the
extent of the interactions between serum proteins acting
as carriers, pH gradients within tumour tissue, leaky tu-
mour vasculature, tissue structure and location and entry
into tumour cells.

Low density lipoprotein (LDL) associated PS uptake
via the LDL receptor pathway is thought to be one of
the main transport mechanisms of PS to tumour cells. It
has been shown that components of PS can bind to either
albumin or serum lipoproteins.60,61 Serum taken from gli-
oma patients undergoing HpD-mediated PDT has revealed
binding to serum proteins as well62 (Fig. 3). There is an
increased number of LDL receptors on the surface of
malignant cells which is expected as the increased rate of
proliferation or membrane turnover would require an a
greater amount of available cholesterol, of which LDLs
are the major carrier in serum. Binding to high density
lipoproteins (HDL) and albumin may also allow for a
non-receptor mediated uptake of a PS into tumour stroma,
or even be responsible for the extended periods of skin
photosensitivity post-systemic administration.63 Also, it is
known that macrophages have an enormous capacity for
LDL and therefore accumulate high concentrations of
PS-LDL complexes, which then localize in the skin, also
causing skin photosensitivity.64,65 Not all tumours show
elevation of LDL receptors49 and binding of relatively
hydrophilic PS to albumin and HDL can lead to tumour
destruction and vascular shutdown via a non-LDL mode
of PS localization.66–69

7. Photosensitizer intracellular localization

The cellular mechanisms involved in PDT have been
studied extensively. The transport and entry of a PS into
a cell are affected by the complex extracellular and cellular
environments and many factors including polarity of the
PS, chemical nature of the side-groups, presence of a che-
lated metal ligand, aggregation properties and binding to
proteins. To aid in the development of the next generation
of PSs, it is necessary to identify the targets of current PS.
Subcellular localization is also dependent on the physico-
chemical properties of the PS once it enters the cell. The
plasma membrane, lysosomes, mitochondria and cyto-
plasm have been shown as areas of localization within a
cell. Due to the short distance (0.02 lm) travelled by singlet
oxygen50 as a result of quenching in biologic systems,70 the
cellular structure that has localized PS or that is close to the
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PS and a high concentration of oxygen will be preferen-
tially damaged by the PDT process on illumination.

Fluorescence microscopy has been the main tool used
in the determination of PS subcellular localization. Con-
ventional epifluorescent microscopes, microscopes with
charge-coupled devices or video cameras and confocal
laser scanning microscopy, have been used to examine
PS localization within cells.71–79 Many PS, including the
heterogeneous HpD and Photofrin, have been shown to
localize mainly within mitochondria.80–85 This may be
important as the benzodiazepine receptor is present in
higher numbers on the membrane of certain neoplastic cell
types and it has a high affinity for some porphyrins in
addition to binding benzodiazepines.86,87 The activation
of PS that have localized in mitochondria, results in the
rapid induction of apoptosis (Fig. 4) through the release
of cytochrome C through the mitochondrial transition
pore into the cytosol.88,89 One of the first links between
PDT and apoptosis was demonstrated by Agarwal et al.
in 1991.90 A necrotic cellular response is generally the
result from PS that localize in lysosomes and plasma
Fig. 4. Schematic of some of the molecular events that occur during photod
photosensitizer (PS) may allow it to bind to the mitochondria, lysosomes, e
photoactivated, cytochrome C (cyt c) is released from the mitochondria into th
the activation of caspase 9. This then leads to the activation of the central eff
ultimately instigate the cleaving of other intracellular proteins that lead to nucle
cell structure and adhesion alteration. The Bcl-2 family family of proteins can
membranes,91–94 although it is possible that lysosomally
localized PS may relocate to more susceptible organelles,
such as the mitochondria in the early stages after light
activation.95–97 Commonly, the type of damage that is
manifested by these types of PS is cellular swelling, bleb-
bing, depolarisation of membranes, release of cytosolic
and lysosomal enzymes and lipid peroxidation.98–102

8. Biological mechanisms of tumour destruction

The three main mechanisms of PDT-mediated tumour
destruction involve a direct cellular toxic effect, vascular
damage or immune reaction. All of these mechanisms are
dependent on a number of factors that will determine their
degree of involvement in the PDT process. The tumour
cells, tumour and normal tissue vasculature and the host
immune and inflammatory system are all targets of the
PDT process. It is evident that a complex system of inter-
related events occur during the PDT process and that it
is not only the nature and structure of the PS, its localiza-
tion within the tumour tissue and oxygen concentration,
ynamic therapy (PDT) induced processes. The intracellular uptake of a
ndoplasmic reticulum or other intracellular membranes. Once the PS is
e cytosol which becomes part of a complex with ATP, APAF-1 to initiate
ector caspase, caspase 3 which cleaves and activates other caspases. They
ar inhibition of DNA repair, nuclear breakdown, degradation of DNA and
promote or inhibit the apoptotic process as shown.
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but also the tumour type, vascularity and even its macro-
phage content103–108 that are involved in the PDT process.

9. Cellular effects

PDT-mediated cellular effects have been proposed to be
the main contributors to cell death, provided there is a suf-
ficient concentration of localized PS in the tumour cells and
if lethal quantities of singlet oxygen are produced following
activation by a suitable light source.

As mentioned previously, the cellular pathways initi-
ated during PDT-mediated photodamage include apopto-
sis or necrosis. As mitochondria have been found to be
one of the sites of localization for many PS, it is possible
that a protein found in the outer membrane of mitochon-
dria (Bcl-2), which is known to be anti-apoptotic, may
influence the cellular effects of apoptosis. The overexpres-
sion of this protein is known to confer some resistance to
chemotherapy and radiation regimens109–112 and this is
also evident in the photodynamic process.113–116 It is spec-
ulated that it is the antioxidant effect of Bcl-2 or the inter-
ference with cellular calcium homeostasis117 that plays a
role in PDT, however its major role in apoptosis is the
inhibition of cytochrome C release from the mitochon-
drial membrane118–120 which is an activator of one of
the central caspases in apoptosis, caspase 3. Xue
et al.121 have shown that Bcl-2 is highly sensitive to the
PDT process, using a phthalocyanine PS. Damage pro-
duced the loss of the native Bcl-2 protein which would
then contribute to the efficient induction of the apoptotic
process by increasing the Bax (pro-apoptotic) : Bcl-2
(anti-apoptotic) ratio. Oxidation of unsaturated fatty
acids and cholesterol in the cellular membranes of the
plasma and mitochondrial membranes122–124 as a result
of activated PS localized in these regions can drastically
affect cellular energy-consuming processes, replication
and repair. Lysosomal localized PS may not produce di-
rect cellular toxicity but the rupturing of the lysosomes
by the production of singlet oxygen may have a twofold
effect. First of all, the possible release of lysosomal en-
zymes may degrade other cellular components125 or the
release of PS from the lysosomes may relocate to other
cellular sites such as mitochondrial membranes and cause
photodamage at the new site.126 Other cellular signalling
molecules, growth factors and cytokines have also been
implicated as either affecting or being affected by the
PDT process.127–129 These include the mitogen activated
protein kinase family (MAPKs), ERKs (extracellular
receptor-stimulated kinase), JNKs (Jun NH2-terminal ki-
nase) and p38 MAPKs,130,131 protein tyrosine kinase
activity of the epidermal growth factor (EGFR) recep-
tor129,132 which is elevated in glioblastoma multi-
forme,133–137 NF-jB (nuclear factor kappa-b)138 which
has been shown to be constitutively activated in glioblas-
toma samples139 and ceramide accumulation,140 which
may induce diverse biological responses, including apop-
tosis or cell cycle arrest.
10. Vascular effects

PDT-mediated cellular events can trigger an apoptotic
or necrotic response, initially through loss of mitochondrial
membrane potential, disruption of lysosomal membrane,
enzyme inhibition or membrane lipid peroxidation, but
vascular destruction within a tumour has also been shown
in vivo. Fingar et al.141 demonstrated that when using
Photofrin to treat tumour-bearing animals, the PDT dam-
age was confined to the tumour vasculature. Following PS
accumulation and irradiation, damage occurred in the sen-
sitive sites within the microvasculature, namely the endo-
thelial cells and the vascular basement membrane. This
allows for the establishment of thrombogenic sites within
the vessel lumen, which in turn instigate events such as
platelet aggregation, the release of vasoactive molecules,
leukocyte adhesion, increases in vascular permeability, ves-
sel constriction and haemorrhage. Ultimately, there is the
stasis of blood flow and tumour microvasculature col-
lapse.142 This is not the case with all PS as McMahon
et al.143 showed, that the vascular effect can differ depend-
ing on the PS and may be reliant on the level of thrombox-
ane production in response to the PDT process.

11. Immunologic effects

It is realized that PDT can elicit tumour destruction via
the modulation of the host immune system. PDT can
either activate or suppress the immune system as the im-
mune system produces cytokines that have a variety of
roles within the host. The interleukins (IL) are a class of
these immune system modulators. IL-6 expression in a
murine tumour model increased after PDT exposure,
whereas IL-10 was seen to decrease, prompting the inves-
tigators to suggest that the general inflammatory response
to PDT in the tumour may be partly due to the increased
expression of IL-6.144 Bellnier145 showed that tumour
necrosis factor-a (TNF-a), when administered as an adju-
vant to Photofrin-mediated PDT, increased phototoxicity
and selectivity. This led to the theory that an increase in
the inflammatory response at the treatment site was insti-
gated by TNF-a , as one of its roles is to stimulate mac-
rophage growth and differentiation. Korbelik has also
reported TNF-a mediation of phototoxicity through mac-
rophage involvement, especially as it was observed that tu-
mour-associated macrophages accumulated up to nine
times the Photofrin levels in comparison to the neighbour-
ing tumour cells,146,147 thus increasing the amount of
available PS and subsequently singlet oxygen at the treat-
ment site. The PDT effect would release TNF-a, mediating
the PDT process as an indirect mechanism of cytotoxicity.
Gollnick and colleagues145 showed that monocyte/macro-
phage and neutrophil infiltration and activity were
involved in the destruction of tumour cells after Photo-
frin-based PDT. The release of heat shock proteins
(HSP) from the tumour cells or macrophages may also
play an important role. HSP can alert the host immune
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system to the presence of a possible threat and induce a
variety of immune and inflammatory responses148,149 that
can act upon the cells that have not undergone necrosis
from the PDT process.

12. PDT dosimetry

Dosimetry discussions in the PDT field have generally
revolved around the importance of light. But a PDT re-
sponse is obtained when there is an interaction between
the localized PS, activating light and oxygen at the treat-
ment site. Therefore, PDT dosimetry can be altered as each
of these factors contribute to the final result.

The aim of PDT is to achieve selective destruction of the
tumour tissue without damaging surrounding normal tis-
sue. A PS that accumulates in tumour tissue to a greater
degree than adjacent normal tissue along with the delivery
of the appropriate light to the tumour site and not the nor-
mal tissue, will assist in administering an efficacious PDT
dose. In general, the PDT dose is a measure of the energy
absorbed by the PS in a given volume of tissue. PS quanti-
fication within tissue has usually been via chemical extrac-
tion and subsequent analysis via spectrophotometric or
fluorometric methods.14,150–152 In vivo methods have also
been utilized to directly measure the concentration of PS
present in the tumour tissue, even though PS aggregation,
photobleaching and tissue optical properties can ultimately
confuse the issue.153–158

Light delivery and penetration to the target tissue con-
taining the accumulated PS is the next important step in
the process. The wavelength of light used, as well as the
optical properties of the tissue, will have a bearing on the
PDT process. Light entering tissue can be reflected at the
surface or scattered internally within the tissue until some
of the light escapes the tissue again or is absorbed by an
internal chromophore within the tissue.159 The internal
chromophore may be haemoglobin contained within blood
present within the tumour or in terms of the PDT process,
the selectively accumulated PS within the tumour cells or
vasculature. Absorption of a light photon by a PS molecule
allows for the excitation of local ground state molecular
oxygen within the tumour to the active singlet oxygen
and subsequent destruction of the tumour cells.

The abolition of the PDT effect has been shown under
anoxic conditions,160 and changes in the oxygen concen-
tration during PDT have also been observed.161,162 The
implication of a reduction in the concentration of available
oxygen during PDT would ultimately limit the generation
of singlet oxygen and diminish the PDT effect, especially in
less vasculature or hypoxic regions of the tumour. Frac-
tionated irradiation or lower fluence rates have been pro-
posed as higher fluence rates tend to consume oxygen in
most cases at a higher rate than it is being replenished
from the circulating blood163–167 and that the lower fluence
rates should produce a more efficient PDT response. This
may not be practical in the clinical environment as the
introduction of intervals (seconds or minutes) allowing
re-oxygenation may dramatically increase total treatment
times.

13. Conclusions

The future of PDT relies on the generation of new PS
synthesized to target different types of cancers that have
varying characterstics. This may allow for custom manu-
facturing of PS tailored towards certain types of malignan-
cies, depending on their location and the depth of
treatment required. PS which possess activation wave-
lengths beyond those of the first generation PSs, efficient
singlet oxygen generation, low systemic toxicity, a purified
composition and high tumour tissue selectivity, will im-
prove the efficacy of the treatment. The development of
inexpensive and simplified light sources have been helpful
in making the treatment more available generally. The clin-
ical aspects of PDT will be discussed in Part II of the review
to be published in the next issue of this journal.
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